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Abstract
Recent dramatic declines in global malaria burden and mortality can be largely
attributed to the large-scale deployment of insecticidal-based measures, namely
long-lasting insecticidal nets (LLINs) and indoor residual spraying. However, the sus-
tainability of these gains, and the feasibility of globalmalaria eradication by 2040,may
be affected by increasing insecticide resistance among the Anopheles malaria vector.
We employ a new differential-equations based mathematical model, which incorpo-
rates the full, weather-dependent mosquito lifecycle, to assess the population-level
impact of the large-scale use of LLINs, under different levels of Anopheles pyrethroid
insecticide resistance, on malaria transmission dynamics and control in a commu-
nity. Moreover, we describe the bednet-mosquito interaction using parameters that
can be estimated from the large experimental hut trial literature under varying levels
of effective pyrethroid resistance. An expression for the basic reproduction number,
R0, as a function of population-level bednet coverage, is derived. It is shown, owing
to the phenomenon of backward bifurcation, that R0 must be pushed appreciably
below 1 to eliminate malaria in endemic areas, potentially complicating eradication
efforts. Numerical simulations of the model suggest that, when the baseline R0 is
high (corresponding roughly to holoendemic malaria), very high bednet coverage
with highly effective nets is necessary to approach conditions for malaria elimina-
tion. Further, while >50% bednet coverage is likely sufficient to strongly control
or eliminate malaria from areas with a mesoendemic malaria baseline, pyrethroid
resistance could undermine control and elimination efforts even in this setting. Our
simulations show that pyrethroid resistance in mosquitoes appreciably reduces bednet
effectiveness across parameter space. This modeling study also suggests that increas-
ing pre-bloodmeal deterrence of mosquitoes (deterring them from entry into protected
homes) actually hampers elimination efforts, as it may focus mosquito biting onto a
smaller unprotected host subpopulation. Finally, we observe that temperature affects
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malaria potential independently of bednet coverage and pyrethroid-resistance levels,
with both climate change and pyrethroid resistance posing future threats to malaria
control.

Keywords Pyrethroid · LLINs · Basic reproduction number · Temperature effects

Mathematics Subject Classification 92B05

1 Introduction

Malaria, a deadly disease caused by protozoan Plasmodium parasites that spread
between humans via the bite of infected adult female Anopheles mosquitoes (World
Health Organization 2016, 2017a), remains a major public health burden affecting
many parts of the globe. Over 2.5 billion people live in areas whose local epidemiol-
ogy permits transmission of P. falciparum, responsible for the most life-threatening
form of malaria (Gething et al. 2011; Johnston et al. 2013). The disease is endemic
in 91 countries, and caused 219 million cases and 435,000 deaths in 2017 Camara
et al. (2018), Global-Health/Malaria (2019), World Health Organization (2018). Dis-
ease burden is concentrated in the African Region, accounting for about 90% of cases
and mortality, with the majority of deaths in children under the age of five (World
Health Organization 2017a). Other populations at high risk of malaria include preg-
nant women and those living with HIV/AIDS (owing to their weakened immune
systems) (Mohammed-Awel and Numfor 2017; World Health Organization 2016).
Malaria transmission dynamics is greatly affected by numerous abiotic and biotic fac-
tors, such as the increased mobility of people (the reservoir for the malaria parasite),
the altered distribution of disease vectors (Anopheles mosquitoes) due to climate and
environmental changes, and malaria’s incursions into new areas [e.g., East African
tropical highlands Himeidan and Kweka (2012)].

The lifecycle of the ectothermal Anopheles mosquito, which consists of three
aquatic juvenile stages (eggs, larva and pupa) and an adult stage, is intimately con-
nected to local weather conditions (Eikenberry and Gumel 2018; Okuneye et al. 2019;
Paaijmans et al. 2010), and is fundamental to the spread of malaria. In sub-Saharan
Africa, favorable environmental conditions (awarm tropical climate) and the relatively
long lifespans and strong human biting habits of the major local Anopheles species,
along with broader socioeconomic conditions, and agricultural and land-use prac-
tices, make this region particularly vulnerable to malaria transmission. Adult female
Anopheles mosquitoes take blood meals from vertebrate hosts (needed for egg devel-
opment) every few days, with the exact interval depending strongly upon temperature
(Beck-Johnson et al. 2017). The mosquito acquires Plasmodium infection by taking
bloodmeals from an infected human, and subsequently passes the disease to a suscepti-
ble human, once parasite maturation within the mosquito is complete. As mosquitoes
must routinely survive the time interval from initial infection to infectivity [which
could range from 8 to 30 days, depending on ambient temperature (Detinova et al.
1962)] for malaria to be transmitted, this explains why the relatively long lifespans of
African Anopheles is so important for effective malaria transmission.
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Great success has been recorded in the fight against malaria since about the year
2000, largely owing to concerted global public health efforts, such as the Roll Back
Malaria initiative and the United Nations Millennium Development Goals (MDGs)
(Huijben and Paaijmans 2017; World Health Organization 2015c). However, malaria
remains amajor public health challenge for about half of the world’s population (Geth-
ing et al. 2016;WorldHealthOrganization2012, 2015b).Newconcerted global efforts,
such as The Global Technical Strategy forMalaria 2016–2030 [approved by theWorld
Health Assembly in May 2015 (World Health Organization 2015c)] and the Zero by
40 Initiative [an initiative of five chemical companies with the support of the Bill &
Melinda Gates Foundation and the Innovative Vector Control Consortium [Global-
Health/Malaria 2019), (Willis and Hamon 2018)], aimed at eradicating malaria by
2030 or 2040, respectively, are currently underway. Central to these laudable malaria
eradication efforts is the widespread use of insecticide-based vector control inter-
ventions, including pyrethroid-based insecticide-treated nets (ITNs; later replaced by
long-lasting insecticidal nets (LLINs)), indoor residual spraying (IRS) and larvacides
(Barbosa and Hastings 2012; Huijben and Paaijmans 2017; Okumu and Moore 2011;
World Health Organization 2015a), complemented by artemisinin-based combination
drug therapy. Five major classes of insecticide are used in malaria control efforts,
namely pyrethroids, organochlorines, organophosphates, carbamates and the recent
addition of neonicotinoids, with all five used for IRS (World Health Organization
2019). Only the pyrethroids, however, owing to their low mammalian toxicity and
irritant effect on mosquitoes, are recommended for ITNs/LLINs (Kabula et al. 2014).
It is notable that the earlier WHO’s (World Health Organization’s) Global Malaria
Eradication Programme (1955–1969) relied almost exclusively on the use of DDT
(Dichlorodiphenyltrichloroethane) and other insecticidal compounds for vector con-
trol, with the theoretical goal of interrupting malaria transmission via decreasing adult
survival times, rather than decreasing mosquito abundance per se, a goal largely based
on the mathematical model of the malariologist GeorgeMacdonald (Macdonald 1957;
Nájera et al. 2011). Long-lasting insecticidal bednets have been used to great success in
reducing the global malaria burden (Bhatt et al. 2015). This success is partly attributed
to community protection. In particular, if the coverage of bednet usage exceeds a cer-
tain threshold level, overall mosquito densities and malaria transmission are impacted
sufficiently to also protect those individuals not using a bednet (Killeen and Smith
2007; Levitz et al. 2018; Okumu and Moore 2011).

It has been estimated that bednets and IRS accounted for 81% of the reduction
in malaria burden recorded in the past 15 years [with most of the benefits resulting
from the use of bednets (Bhatt et al. 2015)]. The dramatic success of pyrethroid-based
LLINs (over IRS) is likely due to multiple factors, including the fact that LLINs target
indoor-biting mosquitoes, are effective as a physical barrier to biting, and pyrthroids
have an excito-repellent effect that may diverting mosquitoes before they feed on the
(protected) human host. However, at themost basic level, the success of LLINs is likely
simply due to the enormous scale of implementation in endemic areas, especially in
sub-SaharanAfrica:Nearly 1.5 billion pyrethroid-based bednets have been deployed in
endemic areas since 2010, with 1.25 billion distributed in sub-SaharanAfrica (Huijben
and Paaijmans 2017; The Alliance for Malaria Prevention 2018). Unfortunately, this
widespread and heavy use of insecticides has resulted in the emergence of vector
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resistance to nearly every currently-available agent used in the insecticides (Alout
et al. 2017; Dondorp et al. 2009; Imwong et al. 2017; World Health Organization
2017b) with pyrethroid resistance via multiple molecular mechanisms now widely
observed across the African continent (Hemingway et al. 2016). Given this, and the
dominant role of LLINs in malaria mortality reductions, any threat to their efficacy
via resistance is of foremost importance.

Perhapsmost significantly, a recent and very large observational cohort study across
five countries found that while LLIN users had lower rates ofmalaria infection and dis-
ease, no relationship between laboratory-assessed insecticide resistance and malaria
epidemiology was detected (Kleinschmidt et al. 2018). Nevertheless, at least some
data does suggest that resistance can undermine the control of malaria disease. One
recent study suggests that insecticide resistance has led to a rebound in malaria inci-
dence in South Africa (Alout et al. 2017). A large, factorial randomized clinical trial
(Protopopoff et al. 2018) comparing LLINs, LLINs treated with a piperonyl butox-
ide (PBO) synergist, and IRS, showed benefit to malaria control with either IRS or a
PBO synergist in addition to an LLIN, suggesting that pyrethroid resistance decreased
the efficacy of the standard LLIN alone. A recent experimental hut trial (Toe et al.
2018) also suggested benefit to LLINs with PBO synergists in an area with highly
pythrethroid-resistant Anopheles.

Some priormathematical work has examined the impact of insecticide resistance on
malaria transmission dynamics. For example, Barbosa and Hastings (2012) developed
a genetic model to predict changes in mosquito fitness and resistance allele frequency
(parameters that describe insecticide selection, fitness cost as well as LLINs and syner-
gist (PBO) are incorporated). The results of their investigation suggested that resistance
was most sensitive to selection coefficients, fitness cost and dominance coefficients.
Chitnis et al. (2009) developed and analysed a linear difference equation model for
the dynamics of host-seeking adult female mosquitoes in a heterogeneous popula-
tion of hosts in a community where ITNs are used. In addition to incorporating the
gonotrophic cycle of the malaria vector and the aforementioned host heterogeneity,
other notable features of the model in Chitnis et al. (2009) include stage-structure
in Anopheles feeding cycle and that such cycle varies across mosquitoes as well as
allowing for the assessment of variousmosquito control interventions. Consistent with
previous studies for the impact of ITNs onmalaria epidemiology in both ITN-protected
and unprotect hosts, Chitnis et al. (2009) shows beneficial effects to unprotected
humans at both, low and high, ITN coverage levels. Birget and Koella (2015a) devel-
oped a population-genetic model of the spread of insecticide-resistance in Anopheles
mosquitoes in response to ITNs and larvicides, which suggested indoor ITNswere less
likely to select for resistance. Brown et al. (2013) developed a mathematical model
to investigate optimal (cost-effective) strategies for mosquito control in the presence
of insecticide resistance. Consistent with previous studies, their results show that fit-
ness costs are the key elements in the computation of economically optimal resistance
management strategies. Mohammed-Awel et al. (2018) designed a novel deterministic
model for assessing the population-level impact of mosquito insecticide resistance on
malaria transmission dynamics and to evaluate the community-wide impact of the use
ITNs, IRS and their combination. Their study showed that the prospect of the effective
control of malaria spread in endemic settings (while minimizing the risk of insecti-
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cide resistance in the female adult mosquito population), using ITNs and IRS, is quite
promising (provided the effectiveness and coverage levels are at optimal levels). Birget
and Koella (2015b) proposed a model to assess the relative importance in different
epidemiological contexts of repellent and insecticidal properties of ITNs. Weidong
and Robert (2009) used an agent-based model that incorporated the killing and avoid-
ance of individual mosquitoes exposed to ITNs in a hypothetical village setting with
50 houses and 90 aquatic habitats. Smith et al. (2009) used a mathematical model to
establish the relationship between P. falciparum parasite rate (PfPR) and ITNs cov-
erage. Killeen and Smith (2007) proposed a model that describes the interaction of a
blood-seeking mosquito with either bednet-protected or unprotected hosts as a two-
stage process, whereby mosquito are either diverted from the attempt, or engage in an
attempt and then either die or succeed in taking a bloodmeal. Similar bednet-human
interaction and feeding cycle models are described in Glunt et al. (2018), Killeen et al.
(2011), Le Menach et al. (2007), Okumu et al. (2013).

The main objective of the current study has been to develop a mathematical model
for assessing the impact of insecticide resistance on malaria epidemiology in malaria-
endemic areas that adopt wide-scale use of LLINs. The main motivation is twofold.
First is the fact that LLINs are the core intervention (due to their superior success over
IRS) for National Malaria Prevention Programs (World Health Organization 2017c,
2015d). Second is the fact that the impact of pyrethroid resistance on malaria trans-
mission/epidemiology is not well-understood and remains a subject for considerable
debate within the malaria control community (Alout et al. 2017; Kleinschmidt et al.
2018; Protopopoff et al. 2018; Toe et al. 2018). The developed model, which takes the
form of a deterministic system of nonlinear differential equations, incorporates key
features of aquatic and adult mosquito dynamics (including the aquatic developmental
stages, adult mosquito gonotrophic cycle, parasite sporogony and schizogony in the
hosts population), disease transmission in humans, and the use of bednets as the sole
control strategy. The human population is stratified based on whether or not they use
LLINs. We partly adapt the prior weather-dependent malaria model of Okuneye et al.
(2019), and previous bednet-mosquito interaction models, such as those proposed in
Glunt et al. (2018), Killeen and Smith (2007), Killeen et al. (2011), Le Menach et al.
(2007), Okumu et al. (2013). We have reviewed the experimental hut trial literature,
and the relationships between key parameters describing bednet efficacy have been
extracted from a large number of experimental studies. Thus, the model quantitatively
represents resistance in a realistic manner.

The ultimate goal is to determine whether effective disease control (or elimination)
is feasible, using LLINs, despite insecticide resistance. The paper is organized as
follows. The model is formulated in Sect. 2, and analysed for its qualitative features
in Sect. 3. The effect of local temperature variability on the effectiveness of LLINs
(and, hence, on disease dynamics and control) is assessed in Sect. 4. Discussion and
concluding remarks are reported in Sect. 5.

123



118 I. Enahoro et al.

2 Model formulation

The model describes the temporal dynamics of immature and adult mosquitoes and
humans. The total immature mosquito population is split into compartments for eggs
(E(t)), four larval instar stages (Li (t); i = 1, 2, 3, 4 and pupae (P(t)). The dynam-
ics of the adult female mosquitoes is governed by the gonotrophic cycle. Following
Okuneye et al. (2019), the adult female mosquito gonotrophic cycle is divided into
three stages (Corbel et al. 2004; Okuneye et al. 2019):

Stage I host-seeking and taking of a bloodmeal
Stage II digestion of bloodmeal and egg maturation
Stage III search for, and oviposition into, a suitable body of water (breeding site)

The populations of vectors in Stages I, II and III of the gonotrophic cycle at time t are
denoted by X(t), Y (t) and Z(t), respectively. With respect to Plasmodium infection
and the sporogonic cycle, vectors in each gonotrophic stage is further subdivided
into susceptible (SX (t), SY (t), SZ (t)), exposed (i.e., infected but not yet infectious)
(EX (t), EY (t), EZ (t)) and infectious (IX (t), IY (t), IZ (t)) compartments. Thus, the
total number of adult female Anopheles mosquitoes at time t , denoted by NM (t), is
given by

NM (t) = SX (t) + EX (t) + IX (t) + SY (t) + EY (t) + IY (t) + SZ (t) + EZ (t) + IZ (t).

The total human population at time t , denoted by NH (t), is split into the total
number of humans who are protected by bednets (i.e., those who consistently sleep
under an LLIN), denoted by NHp (t), and those who are not protected, denoted by
NHu (t). The population of protected and unprotected individuals is further subdivided
into susceptible SHp (t)(SHu (t)), exposed EHp (t)(EHu (t)), infectious IHp (t)(IHu (t))
and recovered RHp (t)(RHu (t)) humans, so that

NH (t) = NHp(t) + NHu(t),

= SHp (t) + SHu (t) + EHp (t) + EHu (t) + IHp (t) + IHu (t) + RHp (t) + RHu (t).

The flow diagram of the model to be developed is depicted in Fig. 1.

2.1 Equations for the dynamics of immaturemosquitoes

It is convenient to define L =
∑4

j=1
L j . The equations for the dynamics of immature

mosquitoes are given by (where a dot represents differentiation with respect to time
t):
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Fig. 1 Flow diagram of the model (2.1), (2.2), (2.4)

Ė = ψEϕZ

(
1 − E

KE

)

+
(SZ + EZ + IZ ) − [σE (TW ) + μE (TW )]E,

L̇1 = σE (TW )E − [σL1(TW ) + μL(TW ) + δL L]L1,

L̇ j = σL j−1(TW )L j−1 − [σL j (TW ) + μL(TW ) + δL L]L j ; j = 2, 3, 4,

Ṗ = σL4(TW )L4 − [σP (TW ) + μP (TW )]P,

(2.1)

where TA and TW represent air and water, temperature, respectively. In (2.1), ψE is
the number of eggs laid per oviposition, ϕZ is the rate at which female mosquitoes
transition from Stage III to Stage I of the gonotrophic cycle (i.e., the rate of oviposition
for mosquitoes in Stage III) and KE is the environmental carrying capacity of eggs
(the notation r+ = max{0, r} is used to ensure the non-negativity of the logistic term).
The quantity δL L represents the density-dependent larval mortality rate (Agusto et al.
2015). Further, μi and σi (i = E, L, P) represent the natural death and maturation
rates of immature mosquitoes of type i , respectively. The temperature-dependence of
the developmental and survival parameters is presented in Sect. 2.4.

2.2 Equations for the dynamics of adult female Anophelesmosquitoes

As stated above, the dynamics of the adult female Anopheles mosquitoes is governed
by the gonotrophic cycle. The total vector population is split into the aforementioned
nine compartments (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ ) corresponding to the three
gonotrophic cycle stages (Okuneye et al. 2019). We let πp represent the proportion of
humans that are protected by a bednet (i.e. consistently sleep under an LLIN), while
πu = 1 − πp is the unprotected portion. In other words, 0 < πp ≤ 1 is the bednet
coverage. Bednet-mosquito interactions are defined by three basic parameters: εdeter ,
εdie,i , and εbite,i , as described now. We let εdeter represent the probability that an
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Fig. 2 A decision tree of probabilities of the model (2.1), (2.2), (2.4)

adult female mosquito is deterred from entering an LLIN-protected hut (or house),
relative to an unprotected hut (or house). That is,

εdeter

= Number of mosquitoes in control group − Number of mosquitoes in the protected hut

Number of mosquitoes in the control group
.

It should be emphasized that, in the context of this study, “deterrence” (as measured
by the parameter εdeter ) means that the mosquito is deterred from entering the house
before any attempt is made to take a bloodmeal. Thus, the parameter εdeter does not
include any direct “barrier” property of the net.

We let εdie,i (with i = {p, u}; p=protected; u=unprotected) represent the probabil-
ity that an adult female mosquito dies following entry into a protected (unprotected)
house. The parameters εbite|die,i and εbite|∼die,i represent, respectively, the probability
that an adult female mosquito successfully takes a bloodmeal from the human host,
given that the mosquito did or did not die, with i (p or u) indicating the bednet pro-
tection status of the targeted human. Figure 2 depicts the associated decision tree of
the aforementioned probabilities).

The (temperature-dependent) equations for adult female mosquito dynamics are
given by:

Stage I

⎧
⎪⎨

⎪⎩

ṠX = f σP (TW )P + ϕZ SZ + bH (Q2 + Q3)SX − [bH Q1 + μX + μM (TA)]SX ,

ĖX = ϕZ EZ + bH (Q2 + Q3)EX − [bH Q1 + κV (TA) + μX + μM (TA)]EX ,

İX = ϕZ IZ + κV (TA)EX + bH (Q2 + Q3)IX − [bH Q1 + μX + μM (TA)]IX ,

(2.2)

123



Long-lasting insecticidal nets and the quest for malaria… 121

Stage II

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṠY = bH [(1 − βVωp)R1 + (1 − βVωu)R2]SX − [θY (TA) + μM (TA)]SY ,

ĖY = bH (βVωp R1 + βVωu R2)SX + bH (R1 + R2)EX

−[θY (TA) + κV (TA) + μM (TA)]EY ,

İY = κV (TA)EY + bH (R1 + R2)IX − [θY (TA) + μM (TA)]IY ,

Stage III

⎧
⎪⎨

⎪⎩

ṠZ = θY (TA)SY − [ϕZ + μM (TA)]SZ ,

ĖZ = θY (TA)EY − [ϕZ + κV (TA) + μM (TA)]EZ ,

İZ = θY (TA)IY + κV (TA)EZ − [ϕZ + μM (TA)]IZ .

where,

Q1 = πp(1 − εdeter ) + πu,

Q2 = πp(1 − εdeter )(1 − εdie,p)(1 − εbite|∼die,p),

Q3 = πu(1 − εdie,u)(1 − εbite|∼die,u),

R1 = πp(1 − εdeter )(1 − εdie,p)εbite|∼die,p,

R2 = πu(1 − εdie,u)εbite|∼die,u,

ωp = IHp

NHp

,

ωu = IHu

NHu

, (2.3)

with ωp (ωu) representing the fractions of protected (unprotected) humans that are
infectious.

In (2.2) and (2.3), the term f σP (0 < f < 1) represents the proportion of new
adult mosquitoes that are females. Susceptible adult mosquitoes in Stage I of the
gonotrophic cycle encounter hosts at a rate bH Q1 (where bH is the mosquito-host
encounter rate per unit time, and Q1 is defined above). The rate bH (Q2 + Q3) rep-
resents failure to take a bloodmeal ending in survival (and thus a return to stage I
of the gonotrophic cycle), while bH (R1 + R2) is the rate at which encounters result
in successful bloodmeals and survival. It should be emphasized that, in the formula-
tion of the model (2.2) questing adult female mosquitoes that do not succeed in biting
bednet-protected humans will not necessarily have to bite an unprotected human. They
will simply look for a bloodmeal from another human who may be protected or not
(see Fig. 1). The parameter κV represents the maturation rate of malaria parasite in the
mosquito (i.e., 1

κV
is the average duration of the sporogonic cycle), while the parameter

θY is the progression rate from Stage II to Stage III of the gonotrophic cycle. Sus-
ceptible adult female mosquitoes in Stage II of the gonotrophic cycle acquire malaria
infection at the rate bH (βVωp R1 + βVωu R2), where βV is the transmission proba-
bility from infectious human to a susceptible mosquito, ωp and ωu are the fractions
of protected and unprotected infectious humans, respectively, and μM is the natural
mortality rate of adult female mosquitoes. Following Chitnis et al. (2009), we assume
an additional mortality rate, μX , for adult female mosquitoes in the host-seeking
stage, as this stage of the gonotrophic cycle is expected to be most hazardous to the
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adult female mosquitoes. Moreover, this helps account for a survival cost potentially
incurredwhen the adult femalemosquitoes are deterred from protected hosts and, thus,
must expend more energy in questing for bloodmeal. Furthermore, as noted by Cator
et al. (2012), sporozoite-infected Anopheles gambiae females are more likely than
uninfected females to take bloodmeal from multiple hosts in the same night, and they
suffer higher feeding-associated mortality. It should, however, be mentioned that very
little is known about adult mosquito mortality in the field, and the degree that mortality
is associated with bloodfeeding events is unknown. Such data, when available, will be
very valuable in malaria modeling studies.

From the above formulation, the (time-varying) entomological inoculation rates
[EIRs; the average numbers of infectious bites per human per unit time (Eikenberry
and Gumel 2018)] for protected and unprotected hosts are given, respectively, by

EIRp(t) = bH
IX (t)

NHp (t)
πp(1 − εdeter )

[
εbite|die,p εdie,p + εbite|∼die,p(1 − εdie,p)

]
,

EIRu(t) = bH
IX (t)

NHu (t)
πu
[
εbite|die,u εdie,u + εbite|∼die,u(1 − εdie,u)

]
.

Similarly, the biting (infectious or uninfectious) rates for protected and unprotected
host are given, respectively, by

bitingp(t) = bH
[SX (t) + EX (t) + IX (t)]

NHp (t)
πp(1 − εdeter )

[
εbite|die,p εdie,p + εbite|∼die,p(1 − εdie,p)

]
,

bitingu(t) = bH
[SX (t) + EX (t) + IX (t)]

NHu (t)
πu
[
εbite|die,u εdie,u + εbite|∼die,u(1 − εdie,u)

]
.

The parameters related to the use of LLINs in the community (i.e., bH , πp, πu, εdeter ,

εbite|∼die,p, εbite|∼die,u, εbite|die,p, εbite|die,u, εdie,p and εdie,u) have been estimated
for various mosquito-bednet pairings using experimental hut trial data conducted in
various parts of sub-Saharan Africa. We assume, for this work, that εbite|∼die,i =
εbite,i , for i = u, p. In brief, such trials typically include a control net and several
treated nets that may be of different classes (conventional ITN vs. LLIN), subject to
different degrees of wear (e.g. washing and/or artificial holing), and conducted in areas
with different levels of local anopheline pyrethroid resistance (or employ lab strains).
Volunteers sleep under nets in these trials, and the total number ofmosquitoes collected
in each hut, the total bloodfed, and the total dead are typically reported. We identified
26 publications conducted in Africa that reported sufficient detail to calculate the
above metrics (Asale et al. 2014; Asidi et al. 2004, 2005; Bayili et al. 2017; Camara
et al. 2018; Chandre et al. 2000; Corbel et al. 2004, 2010; Djènontin et al. 2015, 2018;
Fanello et al. 1999; Ketoh et al. 2018; Koffi et al. 2015; Kweka et al. 2017; Malima
et al. 2008, 2013; N’Guessan et al. 2001, 2007, 2010; Ngufor et al. 2014, 2011, 2016;
Oxborough et al. 2013; Pennetier et al. 2013; Randriamaherijaona et al. 2015; Tungu
et al. 2010).
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Fig. 3 Data-points showing probability of death (εdie,p) and blood feeding (εbite,p) for various mosquito-
net pairings drawn from experimental hut trial data. Each point is coded according to net type by symbol
shape, and according to mosquito resistance class (either pyrethroid resistant or sensitive). Additionally,
representative points on the exponential curve fit relating εbite,p to εdie,p aremarked, signifying parameters
for a highly effective (εdie,p = 0.9, εbite,p = 0.1), moderately effective (εdie,p = 0.5, εbite,p = 0.2),
and weakly effective (εdie,p = 0.25, εbite,p = 0.33) bednet. Data for the curves is drawn from the
references (Asale et al. 2014; Asidi et al. 2004, 2005; Bayili et al. 2017; Camara et al. 2018; Chandre et al.
2000; Corbel et al. 2004, 2010; Djènontin et al. 2015, 2018; Fanello et al. 1999; Ketoh et al. 2018; Koffi
et al. 2015; Kweka et al. 2017; Malima et al. 2008, 2013; N’Guessan et al. 2001, 2007, 2010; Ngufor et al.
2014, 2011, 2016; Oxborough et al. 2013; Pennetier et al. 2013; Randriamaherijaona et al. 2015; Tungu
et al. 2010), as described further in the text

Every mosquito-hut pairing reported in these trials gives a value for εdie,p, εbite,p,
and εdeter . Moreover, each pairing represents some “effective” level of insecticide
resistance (i.e. an ineffective net and a sensitive mosquito and effective net but highly
resistant mosquito may both represent pairings of high effective resistance). These
pairings can be used to estimate how εdie,p and εbite,p systematically co-vary as
effective resistance changes, and a functional relationship between εdie,p (the proba-
bility of death following encounter with a protected host) and εbite,p (the probability
of taking a bloodmeal from a protected host) can been estimated, as depicted in Fig. 3.
We choose the exponential relation,

εbite,p = a0 exp
(−b0 εdie,p

)
,

where the best-fit values of the constants a0 and b0 are found, usingweighted nonlinear
least squares (weighting by number of mosquitoes collected in each trial), to be a0 =
0.55 and b0 = 2. The value of this relationship is that it allows effective bednet
resistance to be described by a single parameter, εdie,p, with εbite,p determined as
a function of εdie,p. Following Randriamaherijaona et al. (2015), we estimate the
probability that a mosquito takes a bloodmeal from a person sleeping without a net or
under an extremely holed untreated net is on the order of 70-80%,while the probability
of death is≤ 5%. Hence, we take εbite,u = 0.7 and εdie,u = 0.05 as baseline parameters
for encounterswith unprotected hosts. The parameter εdeter is assumed to vary between
0.01 to 0.4.

In this study, the following three effectiveness levels of the LLINs are considered
(given in Table 4), as also highlighted in Fig. 3:
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(i) Weakly-effective net: this is a net that has low killing efficacy and high biting
probability. For this setting, we choose εdie,p = 0.25, εbite,p = 0.33. Here, the
adult mosquitoes are highly resistant to the net.

(ii) Moderately-effective net: this is a net with moderate killing efficacy and mod-
erate biting probability. Here, we set εdie,p = 0.5, εbite,p = 0.2, and the adult
mosquitoes are moderately resistant to the net.

(iii) Highly-effective net: this is a net with very high killing efficacy and very low biting
probability. Here, we set εdie,p = 0.9, εbite,p = 0.1. This corresponds to the case
where the adult mosquitoes are weakly resistant to the net.

2.3 Equations for the dynamics of human population

The equations for the dynamics of the human population are given by:

ṠHp = �πp + ηH RHp − (λV Hp + μH )SHp ,

ĖHp = λV Hp SHp − (γH + μH )EHp ,

İHp = γH EHp − (αH + μH + δH )IHp ,

ṘHp = αH IHp − (ηH + μH )RHp ,

ṠHu = �πu + ηH RHu − (λV Hu + μH )SHu ,

ĖHu = λV Hu SHu − (γH + μH )EHu ,

İHu = γH EHu − (αH + μH + δH )IHu ,

ṘHu = αH IHu − (ηH + μH )RHu ,

(2.4)

where, λV Hp (t) = βM EIRp(t) and λV Hu (t) = βM EIRu(t).
In (2.4), � represents the recruitment rate of individuals (by birth or immigration)

into the population (withπp andπu as defined in Sect. 2). The parameter ηH represents
the loss of immunity by individualswho recovered frommalaria. Susceptible protected
humans acquire malaria infection from infectious mosquitoes at a rate λV Hp (λV Hu),
with βM being the probability of infection per bite and E I Rp (E I Ru) as defined in
Sect. 2. Natural mortality occurs in all human compartments at a rate μH . Infected
individuals develop clinical symptoms of malaria at a rate γH , and recover at a rate
αH . Finally malaria-induced death occurs in the infectious human population at a rate
δH .

The model (2.1), (2.2), (2.4) is a modification of the model in Okuneye et al. (2019)
by:

(a) Explicitly including the dynamics of the adult mosquitoes under the influence of
bednet usage (in Stages I and II of the gonotrophic cycle);

(b) Stratifying the human population in terms of bednets usage [only one class for
susceptible, exposed, infectious and recovered humans was used in Okuneye et al.
(2019)].
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The 23-dimensional nonlinear continuous-time model (2.1), (2.2), (2.4) is also an
extension of the 3-dimenisonal, linear, difference equationmodel developed byChitnis
et al. (2009) by:

(i) Explicitly including the dynamics of the immature mosquitoes [i.e., adding equa-
tions for the dynamics of eggs, the four larval instars and the pupal stages of the
aquatic cycle; this was not included in Chitnis et al. (2009)];

(ii) Explicitly incorporating the deterrence property of the bednet [this was not explic-
itly included in Chitnis et al. (2009)];

(iii) Explicitly including the dynamics of the adult mosquitoes under the influence of
bednet usage (in Stages I and II of the gonotrophic cycle);

(iv) Including the dynamics of humans vis a vis malaria transmission, and stratifying
the human population in terms of bednets usage (the dynamics of humans is not
explicitly incorporated in the model in Chitnis et al. (2009), making the model
linear);

(v) Explicitly incorporating the effect of temperature variability on the population
ecology of immature and adult mosquitoes [this was not considered in Chitnis
et al. (2009)].

Furthermore, unlike in the case of the model in Chitnis et al. (2009), the model devel-
oped in this study is simulated subject to three effectiveness levels (low, moderate and
high) of the bednets used in the community. This allows for the assessment of various
levels of insecticide resistance in the community [these bednets effectiveness levels
are not considered in Chitnis et al. (2009)].

The state variables and parameters of the model (2.1), (2.2), (2.4) are described
in Tables 1, 2, and 3. Baseline values and ranges of the parameters of the model
are tabulated in Table 4 [more detailed descriptions may be found in Okuneye et al.
(2019)]. All bednet-related parameters vary with net effectiveness, as described above,
with the sole exception of εdeter , which we fix at 0.1 for all simulation results, unless
otherwise stated.

2.4 Temperature-dependent parameters

Both vector and parasite are ectothermal (dependent on ambient temperature). Thus,
their life histories are significantly affected by temperature. For instance, adult and
immature aquatic mosquito survival is maximized for temperature values in the mid-
20s (◦C), with survival tailing off rather symetrically at higher and lower temperatures
(Eikenberry and Gumel 2018). Further, the development rates of Plasmodium par-
asites, immature anophelines and mosquito eggs generally increase with increasing
temperature to, at least, about 30 ◦C (Paaijmans et al. 2010; Eikenberry and Gumel
2018). Thermal response functions for temperature-dependent parameters are deter-
mined from experimental lab data as follows.

Death rate of adult female mosquitoes (μM (TA)) The mean survival times for
adult Anopheles gambiae under laboratory conditions, and under constant ambient
temperatures ranging from 5 to 40 ◦C (5 ◦C intervals), are taken from Bayoh (2001).
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Table 1 Description of state variables for the model (2.1), (2.2), (2.4)

Variables Interpretation

E Number of eggs

L j ( j = 1, 2, 3, 4) Number of larvae at instar stage j

P Number of pupae

SX , EX , IX Number of susceptible, exposed, and infectious

Female mosquitoes in gonotrophic stage I, respectively

SY , EY , IY Number of susceptible, exposed, and infectious

Female mosquitoes in gonotrophic stage II, respectively

SZ , EZ , IZ Number of susceptible, exposed, and infectious,

Female mosquitoes in gonotrophic stage III, respectively

SHp (SHu ) Number of protected (unprotected) susceptible humans

EHp (EHu ) Number of protected (unprotected) exposed (infected but not yet infectious) humans

IHp (IHu ) Number of protected (unprotected) infectious (symptomatic) humans

RHp (RHu ) Number of protected (unprotected) recovered humans

1

μM (TA)
= max(0.01, a + bTA + cT 2

A), (2.5)

where a = −11.8239, b = 3.3292 and c = −0.0771.
Transition rate from stage II to stage III of gonotrophic cycle (θY (TA)) We describe

the rate at which mosquitoes complete Stage II of the gonotrophic cycle (that is, the
transition from the Y to Z compartment(s)), using a Briere function (Briere et al.
1999), such that

θY (TA) = cTA(TA − T 0
A)(Tm

A − TA)
1
2 , (2.6)

and parameter values are adopted fromMordecai et al. (2013), with c = 0.000203, Tm
A

= 42.3 ◦C and T 0
A = 11.7 ◦C .

Sporogony (κ(TA)) We follow Paaijmans et al. (2010) and use a Briere function
for κ(TA), given by the right-hand side of (2.6) with parameters c = 0.000112, Tm

A =
35 ◦C , and T 0

A = 15.384 ◦C .
Death rate of immature mosquitoes (μE (TW ), μL(TW ), μP (TW )) We assume that

temperature-dependent death rates are equal for eggs, larvae, and pupae, and use
laboratory larval survival times reported by Bayoh and Lindsay (2004), to fit a per-
capita death rate (inverse of survival time) with the fourth-order polynomial,

μi (TW ) = 8.929 × 10−6T 4
W − 0.0009271T 3

W + 0.03536T 2
W

−0.5814TW + 3.509, i = E, L, P. (2.7)

Development rate of immature mosquitoes (σE (TW ), σL(TW ), σP (TW )) We adopt
the relationship between water temperature and overall time from egg to adult, l(TW ),
given by Bayoh and Lindsay (2003) (based on laboratory data),
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Table 2 Description of bednet-independent parameters of the model (2.1), (2.2), (2.4)

Parameters Interpretation

μM Mortality rate for the mosquito population

μX Additional mortality rate for those mosquitoes deterred from entering the protected hut

δL Density-dependent mortality rate of larvae

κV Progression rate of exposed adult female mosquito to infectious stage

ϕZ Oviposition rate for adult in stage III of the gonotrophic cycle (stage III to stage I transition)

βV Transmission probability from infected human to a susceptible mosquito

βM Transmission probability from infected mosquito to a susceptible human

ωp(ωu) Fraction of protected (unprotected) humans that are infectious

θY Progression rate for stage II of the gonotrophic cycle

f Proportion of adult mosquitoes that are females

ψE Number of eggs per oviposition event (stage III to stage I transition)

KE Carrying capacity of eggs

σE Maturation rate from egg to larvae

σL Maturation rate from larvae to pupae

σP Maturation rate from pupae to adult mosquitoes

μE Mortality rate of eggs

μL Mortality rate of larvae

μP Mortality rate of pupae

� Recruitment rate of humans into the population

λV H Infection rate of susceptible humans

γH Progression rate of humans from exposed to infectious (symptomatic) class

δH Malaria-induced mortality rate for humans

αH Recovery rate of infected humans

ηH Rate of loss of infection-acquired immunity

μH Natural mortality rate of humans

Table 3 Description of bednet-related parameters of the model (2.1), (2.2), (2.4)

Parameters Interpretation

πp Proportion of protected hosts

πu Proportion of unprotected hosts

εdeter Probability repelled before entering protected hut relative to unprotected

εbite|∼die,p Probability of bloodmeal in protected houses

εbite|∼die,u Probability of bloodmeal in unprotected houses

εbite|die,p Probability of bloodmeal, given death, in protected houses

εbite|die,u Probability of bloodmeal, given death, in unprotected houses

εdie,p Probability of death in protected houses

εdie,u Probability of death in unprotected houses
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Table 4 Parameters for bednet
effectiveness levels with
deterrence εdeter set to zero

Bednet effectiveness εdie,p εbite,p

Weakly-effective net 0.25 0.33

Moderately-effective net 0.5 0.2

Highly-effective net 0.9 0.1

l(TW ) = (a + bTW + ceTW + de−TW )−1, (2.8)

with a = −0.05, b = 0.005, c = −2.139 × 10−16 and d = −281357.656. We assume
that the duration of all six immature stages (egg, four larval instars, and pupa) is equal,
giving (Okuneye et al. 2019). We determined stage-specific development times as a
function of temperature from Fig. 1 of Bayoh and Lindsay (2003), as shown in Fig. 4.
Development times are similar across all immature stages, with appreciable overlap
in the temperature-dependent curves. Therefore, we simply assume all stages have the
same duration, and the uniform temperature-dependent development rates are given
as

σE (TW ) = σP (TW ) = σL(TW ) = 6
1

l(TW )
. (2.9)

We have assumed, for this study, that near the surface of the water, air and
water temperature are approximately equal (Agusto et al. 2015; Iboi and Gumel
2018), giving TA = TW (unless otherwise stated, a default value of TA =
TW = 25 ◦C will be used to compute each of the aforementioned temperature-
dependent parameters of the model). Further, since (by using fixed temperature
values) the aforementioned temperature-dependent parameters take constant values,
the model (2.1), (2.2), (2.4) is autonomous. This assumption is made for mathematical
tractability.

2.5 Basic qualitative properties of themodel

Thebasic qualitative properties of themodel (2.1), (2.2), (2.4) in the absence of density-
dependent mortality rate in the larvae stage (δL = 0) are explored in this section, with
the positivity and boundedness of the solutions of the model established.
Let AX = SX + EX + IX , AY = SY + EY + IY , AZ = SZ + EZ + IZ and
NM (t) = AX (t) + AY (t) + AZ (t). Further, define

X = (
E, L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ , SHp , EHp ,

IHp , RHu , SHu , EHu , IHu , RHu

)
.

It is convenient to group the variables of the model (2.1), (2.2), (2.4) as follows:
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Fig. 4 Development times of the
dynamics of the immature
mosquitoes

B1 = (E, L1, L2, L3, L4, P) ,

B2 = (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ ) ,

B3 = (
SHp , EHp , IHp , RHu , SHu , EHu , IHu , RHu

)
.

(2.10)

Consider the feasible region � = �1 × �2 × �3 for the model (2.1), (2.2), (2.4),
where:

�1 =
{
B1 ∈ R

6+ : E(t) ≤ KE , L1(t) ≤ L�
1, L2(t) ≤ L�

2, L3(t) ≤ L�
3, L4(t)

≤ L�
4, P(t) ≤ P�} ,

�2 =
{
B2 ∈ R

9+ : NM (t) ≤ f σP P�

μM

}
, �3 =

{
B3 ∈ R

8+ : NH (t) ≤ �

μH

}
,

(2.11)

with, L�
1 = σE KE

σL1+μL
, L�

2 = σL1 L
�
1

σL2+μL
, L�

3 = σL2 L
�
2

σL3+μL
, L�

4 = σL3 L
�
3

σL4+μL
and P� = σL4 L

�
4

σP+μP
.

We claim the following result.

Lemma 2.1 Consider the model (2.1), (2.2), (2.4).

(a) Each component of the solution of the model, with non-negative initial conditions,
remains positive and bounded for all time t > 0.

(b) The set � is positively-invariant and attracting region for the model.

The proof of Lemma 2.1 is given in “Appendix A”.

3 Mathematical analysis

In this section, the model (2.1), (2.2), (2.4) is rigorously analysed to show the exis-
tence and asymptotic stability of its disease-free equilibrium, and to characterize the
bifurcation structure of the model. We define the threshold quantity, N0, as
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N0 = ψEϕZσE f σPθYC2
∏4

i=1 σLi

(C1K9K11 − C2θYϕZ )
∏6

i=1 Ki
, (3.1)

where C1 = K7 − bH (Q2 + Q3), C2 = bH (R1 + R2), K1 = σE + μE , K j =
σL j−1 +μL ( j = 2, . . . , 5), K6 = σP +μP , K7 = bH Q1+μX +μM , K9 = θY +μM

and K11 = ϕZ +μM . Furthermore (noting the definitions of C9, C10 and C11 given in
“Appendix B”), C1K9K11 − C2θYϕZ = μ3

M + μ2
MC9 + μMC10 + C11 > 0. Hence,

N0 > 0.
The quantityN0, which is the extinction threshold for the mosquito population of the
model, measures the average number of new adult femalemosquitoes produced by one
reproductive mosquito during its entire reproductive period (Eikenberry and Gumel
2018; Okuneye et al. 2019).

3.1 Existence of the disease-free equilibrium

The existence and asymptotic stability of the disease-free equilibrium (DFE) of the
model (2.1), (2.2), (2.4) is demonstrated here, andwe examine the following equilibria:

(i) The model (2.1), (2.2), (2.4) has a trivial disease-free equilibrium (TDFE), given
by:

T1 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗

Hp
, 0, 0, 0, S∗

Hu
, 0, 0, 0

)
,

=
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

�πp

μH
, 0, 0, 0,

�πu

μH
, 0, 0, 0

)
.

The equilibrium T1 is ecologically unrealistic (since it is associated with the total
absence of mosquitoes in the community). Hence, it is not analysed.

(ii) The model (2.1), (2.2), (2.4) has a unique non-trivial disease-free equilibrium
(NDFE), given by:

T2 =
(
E∗, L∗

1, L
∗
2, L

∗
3, L

∗
4, P

∗, S∗
X , 0, 0, S∗

Y , 0, 0, S∗
Z , 0, 0,

�πp

μH
, 0, 0, 0,

�πu

μH
, 0, 0, 0

)
,

where,

E∗ = KE

(
1 − 1

N0

)
, L∗

1 = σE E∗

K2
, L∗

2 = σL1L
∗
1

K3
, L∗

3 = σL2L
∗
2

K4
,

L∗
4 = σL3L

∗
3

K5
, P∗ = σL4L

∗
4

K6
, S∗

X =

[
f σEσP KE

(
1 − 1

N0

)
K9K11

] 4∏
i=1

σLi

(C1K9K11 − C2θYϕZ )
6∏

i=2
Ki

,

S∗
Y = C2S∗

X

K9
, S∗

Z = θY S∗
Y

K11
.

(3.2)
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It is clear from Eq. (3.2) that the equilibrium T2 exists if and only if N0 > 1 (it is
assumed from here on that N0 > 1, so that the non-trivial disease-free equilibrium,
T2, exists). It is worth noting that the NDFE (T2) is the non-extinction equilibrium
for the mosquito population coupled with the trivial disease-free equilibrium (T1) for
the human population. Hence, in the absence of the vectors and the disease, the two
subsystems (T1 and T2) are uncoupled.

3.2 Asymptotic stability of the NDFE

Consider themodel (2.1), (2.2), (2.4). It can be shown, using the next generation opera-
tor method van den Driessche andWatmough (2002), that the associated reproduction
number R0 of the model is given by:

R0 =
√

(RHpV + RHuV ) × RV H , (3.3)

where,

RHpV = γHβV N∗
HuQpR1

K13K14
, RHuV = γHβV N∗

HpQu R2

K13K14
, (3.4)

and,

RV H = bHβMS∗
X

N∗
HpN

∗
Hu

κVϕZθY [(K9 + K12)C3 + K9K11]
(C3K10K12 − C2θYϕZ ) (C1K9K11 − C2θYϕZ )

, (3.5)

with,

Qp = bHπp(1 − εdeter )
[
εbite|die,p εdie,p + εbite|∼die,p(1 − εdie,p)

]
,

Qu = bHπu
[
εbite|die,u εdie,u + εbite|∼die,u(1 − εdie,u)

]
,

N∗
Hp = �πp

μH
, N∗

Hu = �πu
μH

, C3 = K8 − bH (Q2 + Q3), K8 = bH Q1 + κV +
μX + μM , K10 = θY + κV + μM , K12 = ϕZ + κV + μM , K13 = γH + μH and
K14 = αH + δH + μH . It can be shown that C3K10K12 − C2θYϕZ = bH [C4κ

2
V +

2κV
(
μM + θY

2 + ϕZ
2

)
C5+C6+C7]+C8 > 0 (where the coefficientsCi (i = 2, ..., 8)

are constants, and are given in “Appendix D”). Hence,RV H > 0 (and thusR0 is also
automatically positive).

Theorem 3.1 Let N0 > 1. The NDFE, T2, of the model (2.1), (2.2), (2.4) is locally-
asymptotically stable (LAS) in � \ T1 ifR0 < 1, and unstable ifR0 > 1.

The epidemiological implication of Theorem 3.1 is that malaria is eliminated from
the population if the initial sizes of the subpopulations of the model (2.1), (2.2), (2.4)
are in the basin of attraction of the non-trivial disease-free equilibrium (T2 ). Hence,
a small influx of malaria-infected individuals into the community will not generate
large outbreaks, though larger influxes may.
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It is notable that the value of the reproduction number (R0) for the worst-case sce-
nario (i.e., bednet coverage is zero), denoted by R̃0∗ and computed using the baseline
parameter values in Table 4, is R̃0∗ � 11.4 (see “Appendix C” for the formulation of
the special case of the model (2.1), (2.2),(2.4) with no bednet coverage). This high
value of the reproduction number is typically seen in holo-endemic malaria regions
(Gething et al. 2010). It should be mentioned that, for the computation of the value
of the reproduction number for this (holo-endemic) setting, we assumed (in Table 4)
that there are, on average, 100 eggs per human (which translates to about 10 adult
mosquitoes per human). When we reduce the number of eggs per human to 10 per
human, so that we have one mosquito per human [which is more typically the case in
meso-endemic regions (Gething et al. 2010)], the value of R0 reduces to R̃0∗ � 3.6.
Hence, these computations (together with Theorem 3.1) show that, for the worst-case
scenario (with no bednets used in the community), the disease will persist in both the
holoendemic and themesoendemic regions (since R̃0∗ > 1 in both cases), as expected.

3.3 Existence of backward bifurcation

The phenomenon of backward bifurcation has been observed in numerous models
[such as those inBlayneh et al. (2010), Feng et al. (2015),Garba et al. (2008),Garba and
Gumel (2010), Iboi andGumel (2018), Iboi et al. (2018)] for spreadofmalaria andother
vector-borne diseases that incorporated disease-induced death in the host population.
A backward bifurcation is characterized by the co-existence of two asymptotically-
stable equilibria whenR0 < 1: an endemic equilibrium point (EEP) and a disease-free
equilibrium point (DFE). Thus, the classical epidemiological requirement thatR0 be
less than one for elimination of the disease, while necessary, is no longer sufficient
to eliminate malaria when it already exists in the population. That is, while R0 ≥ 1
remains a condition for malaria to spread within a previously unexposed population,
pushing R0 < 1 via control measures does not necessarily guarantee elimination of
the disease.

Theorem 3.2 The model (2.1), (2.2), (2.4) undergoes a backward bifurcation atR0 =
1whenever a bifurcation coefficient, denoted by a (given in “AppendixD”), is positive.

Proof The proof of Theorem 3.2, based on using Center Manifold theory Carr (1981);
Castillo-Chavez and Song (2004), is given in “Appendix D”. The result given by
Theorem 3.2 is numerically illustrated by simulating themodel (2.1), (2.2), (2.4) using
parameter values such that the backward bifurcation condition, given in “Appendix
D”, is satisfied (Fig. 5). 
�
The range for backward bifurcation for aweakly-effective net (i.e., a net with εdie,p =
0.25, εbite,p = 0.33) is βM ∈ (0.526394,∞), a moderately-effective net (i.e., a net
with εdie,p = 0.5, εbite,p = 0.2) is βM ∈ (0.503682,∞) and that for a highly-
effective net (i.e., a net with εdie,p = 0.9, εbite,p = 0.1) is βM ∈ (1.4009823,∞),
where βM is the chosen backward bifurcation parameter (see “Appendix D”). Hence,
this study shows that the phenomenon of backward bifurcation is more likely to occur
using a moderately-effective net than when either a weak or highly-effective net is
used.
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Fig. 5 Backward bifurcation diagram of the model (2.1), (2.2), (2.4), showing a plot of IHp(t) as a function
of the reproduction number R0, where βM is the chosen bifurcation parameter. Parameter values used
are as given in Table 5 with: πp = 0.5, πu = 0.5, εdeter = 0.75, εbite|∼die,p = 0.1, εbite|∼die,u =
0.7, εbite|die,p = 0.1, εbite|die,u = 0.7, εdie,p = 0.9, εdie,u = 0.05, bH = 2, μX = 0.005, ψE =
5, δH = 0.0005, ηH = 1/14, βV = 0.5,� = 1 and KE = �

μH
(so that the bifurcation coefficient, a

(defined in “Appendix D”), is given by a=5.42 × 10−6 > 0 and R0 = 1). It should be mentioned that in
order to generate this figure, the values of seven parameters (μX , ψE , KE , ηH , δH , βV and �) have to be
chosen outside their biologically-feasible ranges given in Table 5

Theorem 3.2 shows that elimination is dependent on the initial sizes of the infected
vector and human populations. For elimination to be independent of the size of the
infected populations, a global asymptotic stability property must be explored for the
non-trivial disease-free equilibrium (T2). It is convenient to define the associated repro-
duction number of the model (2.1), (2.2), (2.4) in the absence of disease-induced
mortality in the host population (δH ) by

R̃0 = R0|δH=0. (3.6)

We claim the following.

Theorem 3.3 The NDFE, T2, of the model (2.1), (2.2), (2.4), with δH = 0 andN0 > 1,
is globally-asymptotically stable (GAS) in � \ T1 if R̃0 < 1.

The proof of Theorem 3.3, based on using Lyapunov function theory and LaSalle’s
Invariance Principle, is given in “Appendix E”. The epidemiological implication of
Theorem 3.3 is that, for the special case of themodel (2.1), (2.2), (2.4) with no disease-
induced mortality in the host population (i.e., δH = 0), bringing and maintaining
the associated reproduction threshold (R̃0) to a value less than one is necessary and
sufficient for complete elimination of malaria in the community, regardless of initial
conditions.
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Fig. 6 Relationships amongEIR, fraction of infected humans, bednet coverage level, and R̃0, at the endemic
equilibrium, as determined from numerical simulation of the model (2.1), (2.2), (2.4), and for fixed temper-
ature (25 ◦C). Results are disaggregated between the protected, unprotected, and overall (bednet-protected
and unprotected human) populations. Results are determined using baseline parameter values with a highly
effective net in a holoendemic setting (KE = 100 �

μH
, R̃0∗ = 11.4 with no bednet coverage)

4 Numerical simulations: populations at equilibrium

4.1 Interaction between bednet coverage and bednet efficacy parameters

To assess the population-level impact of bednets on malaria transmission dynamics in
the community under equilibrium conditions (i.e., the model is numerically simulated
until an endemic equilibrium is reached), the model (2.1), (2.2), (2.4) is simulated
using various bednet coverage and effectiveness levels, where bednet effectiveness is
jointly defined by εbite,p and εdie,p. Unless otherwise stated, all simulations use the
baseline parameter values in Table 5, and temperature is fixed at 25 ◦C (i.e., the values
of all the temperature-dependent parameters of the model are obtained by evaluating
each of the functional forms in Sect. 2 at the fixed temperature T=25 ◦C). Figure 6
illustrates the nonlinear relationships between bednet coverage fraction, πp, disease
prevalence in the two human populations (bednet-protected and unprotected), R̃0 (i.e.,
R0 for the case when the disease-induced mortality in the human population, δH , is
set to zero), and EIR (again, in the bednet-protected and unprotected populations), at
endemic equilibrium and for baseline parameters. Notably, this figure shows that EIR
decreases with increasing bednet coverage (top right panel). This result is consistent
with that reported in the modeling study by Chitnis et al. (2009), which used data
relevant tomalaria transmission dynamics in Ifakara, Tanzania (i.e., data forAnopheles
gambiae feeding on a heterogenous human population, with no cattle), to show that
bednets are effective in reducing malaria transmission. Our result is also consistent
with the results of the field trials on permethrin-treated bednets in western Kenya
reported by Hawley et al. (2003).
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Further, as evident from the graph in the lower left panel of Fig. 6, human disease
prevalence varies hyperbolically with EIR (i.e., prevalence increases with increasing
EIR), such that, for a high baseline EIR, a large reduction in EIR is required before any
meaningful malaria control is realized. A five-fold reduction in overall EIR, however,
is achieved with roughly 20% bednet coverage (see upper right panel of Fig. 6). Thus,
although even a relatively low bednet coverage can aid somewhat in malaria control,
the simulations in Fig. 6 show that much higher bednet coverage (and a decrease in
EIR of two orders of magnitude) is needed to achieve malaria elimination. Finally,
there is a similar, although less marked, hyperbolic relationship between increasing
R̃0 and increasing disease prevalence (bottom right panel).

We explore how changes in εbite,p and εdie,p (i.e. net effectiveness) affect R̃0,
starting from either a baseline R̃0 value of 11.7, presumably representing holoendemic
malaria, or 3.7, which is more appropriate for mesoendemic malaria. In particular, we
generate contour plots of R̃0 as a function of εbite,p and εdie,p, for either low (20%)
or high (80%) bednet coverage levels (Fig. 7). The inscribed curve on each contour
plot of Fig. 7 shows how εbite,p and εdie,p co-vary, based upon the experimental
hut data discussed in Sect. 2.2. In these plots, the highlighted points indicate highly,
moderately, andweakly effective nets. It follows from Fig. 7 that, for themesoendemic
baseline, even a moderately effective net is capable of pushing R̃0 to a value less than
one when bednet coverage is high (80%). Further, for this (mesoendemic baseline
scenario) even low bednet coverage (20%) may substantially improve malaria control.
In the holoendemic baseline, on the other hand, only a highly effective net with high
coverage can have a chance to approach malaria elimination. Thus, these simulations
show that our study only supports the claim in the malaria modeling study by Chitnis
et al. (2009) (based on data relevant to malaria dynamics in Ifakara, Tanzania) and
the permethrin-treated bednets field trial in western Kenya by Hawley et al. (2003)
that bednets reduce malaria transmission if the malaria region being considered is
mesoendemic. For holoendemic malaria regions, our study shows that only a highly-
effective net, coupled with very high coverage, can lead to effective control of malaria.
Ifakara andwesternKenya are considered regions of highmalaria endemicity (Githeko
et al. 1992; Holzer et al. 1993).

Figure 7 also suggests that high coverage of weakly effective (i.e. low killing
efficiency) nets is better than low coverage with highly effective (i.e. high killing
efficiency) nets. For example, in the holoendemic setting, 20% coverage with a highly
effective net pushe R̃0 from 11.7 to 5.5, while 80% coverage with a weakly effective
net gives R̃0 of 3.6. Given the nonlinear relationship between R̃0 and disease preva-
lence, widespread use of even marginally effective bednets may better control malaria
than lower coverage rates with better (more effective) nets.

Finally, Fig. 8 shows the nonlinear relationship between R̃0 and EIR, such that EIR
must be pushed very close to zero before R̃0 drops below one. In other words, Fig. 8
shows that a significant reduction in EIR is needed in order to bring the reproduction
number R̃0 to a value less than 1 (so that, by Theorem 3.3, malaria elimination can
be achieved).

We also examine how deterrence, as measured in the model by εdeter , interacts
with bednet coverage and net effectiveness to determine R̃0, as shown in the contour
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Fig. 7 Contour plots of the R̃0 of the model (2.1), (2.2), (2.4), as a function of εdie,p and εbite,p (the
respective probabilities that a mosquito dies or takes a blood meal upon encountering a protected human),
for four different permutations of bednet coverage and baseline R̃0. The top panels use KE = 100 �

μH
to

approximate a holoendemic baseline, while the bottom panels use KE = 10 �
μH

as an approximation of a
mesoendemic baseline. Bednet coverage is either 20% (left) or 80% (right). The inscribed curve shows the
approximate relationship between εdie,p and εbite,p derived from experimental hut trial data (using the
exponential relation given in Sect. 2.2), with three qualitative net effectiveness levels highlighted

plots in Fig. 9. Perhaps surprisingly, increasing deterrence generally results in an
increase in R̃0. This is likely because increasing εdeter focuses mosquito biting upon
the unprotected subpopulation, resulting in more intense malaria transmission among
this subpopulation and an overall increase in R̃0. It should be emphasized here that
this increased biting on unprotected persons is not an assumption directly imposed on
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Fig. 8 Numerically determined relationship between overall EIR and R̃0 at the endemic equilibrium,
where variability in EIR is generated by changing bednet coverage, πp . For larger EIR, R̃0 decreases
nearly linearly with falling EIR, while for very small EIR, R̃0 decreases dramatically with falling EIR.
Thus, EIR must be pushed very close to zero for malaria elimination. Results are generating using baseline
parameter values with a highly effective net in a holoendemic setting (KE = 100 �

μH
)

Fig. 9 Contour plots showing R̃0 as a function of εdeter and πp (bednet coverage), for weakly, moderately,

and highly effective nets. For this figure, we use KE = 100 �
μH

to approximate a holoendemic baseline

the model, but is a natural consequence of the fact that, if a mosquito does not attempt
a bloodmeal on a net-protected human she has encountered, due to deterrence, she will
continue in her search and likely ultimately encounter an unprotected person (although
this comes at an increased mortality, denoted by μX in the model 2.2).

4.2 Effects of temperature

We examine the effect of changingmean ambient temperature (assumed equal to water
temperature) upon R̃0 and EIR, as shown in Fig. 10. We see an asymmetric increase
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Fig. 10 The left panel shows how R̃0 varieswithmean temperature, using a fixedπp = 0.5, KE = 100 �
μH

,
and a highly effective net. The right shows the numerically determined equilibrium values of EIR for
protected, unprotected, and overall human populations as a function of temperature (and for the same
parameter values). Both R̃0 and EIR, across populations, peak around 29 ◦C

in R̃0 and EIR from low temperatures to peaks around 29–30 ◦C, followed by rapid
drop-offs at higher temperatures. In other words, malaria burden is maximized for
temperature values in the range 29–30 ◦C, and such burden decreases for increasing
temperatures thereafter. This peak is similar to that reported by Okuneye et al. (2019),
but higher than the reported value by the well-known Mordecai et al. (2013) study.
Furthermore, although the results in Fig. 10 are obtained using a highly effective net
with KE = 100 × �/μH , it should be stated that qualitatively similar results are
obtained regardless of net type and KE value.

To determine if temperature alters the qualitative interaction between bednet effi-
cacy, bednet coverage, and control, we have generated a series of contour plots showing
R̃0 as a function of εdie,p and εbite,p, for different ambient temperatures; several
surfaces are given in Fig. 11. While altering the maximum R̃0 value, changes in tem-
perature have no meaningful effect upon the qualitative contour shape. That is, while
maximum R̃0 varies between about 1.3 and 4.5 in the contours shown in Fig. 11, the
surface shapes are essentially invariant. Mirroring Fig. 10, maximum R̃0 increases
up to nearly 30 ◦C and then falls off. Thus, it is concluded that bednet coverage and
temperature independently affect malaria risk.

5 Discussion and conclusions

Great success has been recorded in the concerted global effort against malaria over the
past 15 years, thanks largely to the large-scale use of long-lasting insecticidal bednets
(LLINs) and indoor residual spraying (IRS) in malaria-endemic regions within sub-
Saharan Africa. There is now a strong global push to eradicate malaria [particularly
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Fig. 11 Contours of R̃0 as a function of εdie,p and εbite,p for four different ambient temperatures, and

for different net at 50% bednet coverage (with KE = 100 �
μH

). The qualitative shape of the contour plots
does not appreciably vary with temperature

the “Zero by 40” initiative of five chemical companies, with support of the Bill &
Melinda Gates Foundation and the Innovative Vector Control Consortium [Global-
Health/Malaria 2019), Willis and Hamon (2018)]. Given the widespread emergence
of vector resistance to pyrethroid-based insecticides (the only chemical agent approved
for use in LLINs), and the uncertainty surrounding how this affects (and will affect)
malaria epidemiology, mathematical modeling studies are a promising to examine the
interaction between bednet resistance and malaria epidemiology.

123



142 I. Enahoro et al.

This paper presents a novelmathematicalmodel, of the formof deterministic system
of nonlinear differential equations, for gaining insight into the transmission dynamics
of malaria in a population where a certain percentage of the populace use LLINs
(consistently and correctly). In addition to incorporating many critical features of
malaria disease (e.g., the four main cycles associated with malaria disease, namely
immature mosquito life cycle, adult mosquito gonotrophic cycle, parasite sporogony
in the mosquito and schizogony in humans; stratifying human population according to
bednet usage; etc.), the model allows for the assessment of the killing and deterrence
properties of the LLINs (in particular, in addition to killing adult mosquitoes (with
some efficacy) upon encounter, the nets can also deter the mosquito from entering the
house and/or from biting the human host). The model has been parametrized using
ecological data and parameter values relevant to malaria transmission dynamics in
holo- and meso-endemic regions of sub-Saharan Africa, and was used to evaluate
the population-level impact of various LLINs coverage and effectiveness levels. For
numerical simulation purposes, the effectiveness levels of the bednets described in
Sect. 2.2 are considered.

The developed model was rigorously analysed to gain insight into its dynamical
features (thereby allowing for the determination of important ecological and epidemi-
ological thresholds that govern the persistence, effective control and/or elimination of
the disease in a population). It is, first of all, shown, using the theory of center manifold
(LaSalle and Lefschetz 1976), that the model undergoes the phenomenon of backward
bifurcation, when the reproduction number of the model is less than 1, whenever a
certain bifurcation coefficient attains positive values. This condition is associated with
the disease-induced mortality in the host population being set to zero (Iboi and Gumel
2018; Iboi et al. 2018). The epidemiological implication of this phenomenon is that the
usual epidemiological requirement of having the reproduction number of the model
being less than 1, while necessary, is no longer sufficient for the effective control of
the disease. Thus, when a backward bifurcation exists, greater control effort is needed
to eradicate disease.

However, the phenomenon of backward bifurcation does not exist in the model
developed in this study if all the values of the parameters are chosen from their biolog-
ically realistic ranges in Table 5, for a holoendemic setting, with five parameter values
chosen outside the given range to illustrate a backward bifurcation. Thus, this study
shows that, for a holoendemic malaria setting, the backward bifurcation phenomenon
in the developed model is essentially a mathematical artifact which may not be real-
izable using realistic data (or set of parameter values). This result is consistent with
those reported inGarba et al. (2008), Garba andGumel (2010), Iboi andGumel (2018),
Iboi et al. (2018), which also showed that backward bifurcation is not realizable using
realistic parameters.

The backward bifurcation phenomenon is known to exist in vector-borne disease
models that incorporate disease-induced death in the host(s) population(s). This is
confirmed, in the current study, by showing that such bifurcation does not occur in the
special case of the model with no disease-induced death in the human population (we
showed, using Lyapunov function theory together with LaSalle’s Invariance Principle,
that the disease-free equilibrium of the special case of the model with no disease-
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induced death rate is, indeed, globally-asymptotically stable whenever the associated
reproduction number is less than 1).

The impact of coverage level of the LLINs is monitored by simulating the model
using various coverage levels. The simulation results obtained show, expectedly, that
the disease prevalence in the host population (including those protected, by sleeping
under a net, and the unprotected ones who do not sleep under a net) decreases with
increasing coverage levels.

We observe LLINs at 20% coverage to reduce the reproduction number, at the
holoendemic baseline (approximated by KE = 100 × �/μH ), from a baseline value
of about 11.7 to either 9.2, 7.3, or 5.5, under weakly, moderately, or highly effective
bednets, respectively. Increasing coverage to 80% yields R̃0 values of 3.6, 1.6, and
0.6, for the same respective net efficacies. Thus, malaria elimination in holoendemic
regions will require highly effective nets at high coverage levels. At the mesoendemic
baseline, approximated by KE = 10× �/μH and giving R̃0 = 3.7 without bednets,
we see similar relative reductions in R̃0. However, given the lower baseline R̃0, even
weakly effective nets give R̃0 = 1.1 under 80% bednet coverage, near the elimination
threshold, and both moderately and highly effective nets push R̃0 well below zero.
Bednet coverage of 20%, in this case, improves malaria control, but is insufficient for
elimination.

The widespread use of insecticide-based vector control interventions, including
pyrethroid based insecticide-treated nets (ITNs; later replaced by long-lasting insecti-
cidal nets (LLINs)) has resulted in the emergence of vector resistance to nearly every
currently-available agent used in the insecticides (Alout et al. 2017; Dondorp et al.
2009; Imwong et al. 2017; World Health Organization 2017b) with pyrethroid resis-
tance now widely observed across the African continent (Hemingway et al. 2016).
Most nets distributed to-date are pyrethroid-only nets (although pyrethroid nets with
the synergist PBO and pyrethroid nets with a second active ingredient are now avail-
able), and pyrethroid-only nets will likely remain a core vector control intervention
over the next few years. As such it is critical to understand their current impact—now
resistance to their active ingredients is so widespread—onmalaria epidemiology. This
study suggests that high coverage of weakly effective (i.e. low killing efficiency) nets
is better than low coverage with highly effective (i.e. high killing efficiency) nets.

The impact of the deterrence property of LLINs to repel mosquitoes from entering
protected house has also been examined, andwefind, perhaps unexpectedly, that higher
deterrence almost uniformly increases R̃0. This is likely because mosquitoes repelled
from protected persons now focus their efforts on the unprotected subpopulation,
thus increasing transmission within this group and potentially hampering elimination
efforts.

The transmission cycle ofmalaria is greatly affected by changes in the environment.
In particular, the life-cycles of the malaria vector (adult female Anopheles mosquito)
and parasites (Plasmodium) are both strongly affected by changes in ambient temper-
ature, while suitable aquatic habitat is necessary for immature mosquito development.
Therefore, we have examined how malaria burden changes with mean ambient tem-
perature, and how this interacts with bednet coverage. We find R̃0 and EIR to both
peak at just under 30 ◦C, with this true regardless of bednet coverage levels. Indeed,
we observe bednet coverage and temperature to essentially independently influence

123



144 I. Enahoro et al.

R̃0. Thus, somewhat colder regions, such as the eastern African highlands, may see
an increase in malaria potential with climate change, while warmer western regions
may be little affected.
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Appendix A: Proof of Lemma 2.1

Proof (a) It should be noted, first of all, that the right-hand side of each of the equations
of the model (2.1), (2.2),(2.4) is continuous and locally-Lipschitz at t = 0. Hence,
a solution of the model with non-negative initial conditions exists and is unique in
� = �1 × �2 × �3 for all time t > 0 (see also Iboi et al. 2018; Okuneye et al.

2019). Furthermore, since
(
1 − E

KE

)

+ ≥ 0, it follows from the first equation of the

sub-system (2.1) that E(t) ≤ KE for all time t > 0. Similarly, it follows from the
second equation of the sub-system (2.1) that

L̇1 = σE E − (
σL1 + μL

)
L1 ≤ σE KE − (

σL1 + μL
)
L1,

so that lim sup
t→∞

L1(t) ≤ σE KE

σL1 + μL
= L�

1 . Using a similar approach, it can be

shown that lim sup
t→∞

L2(t) ≤ σL1L
�
1

σL2 + μL
= L�

2, lim sup
t→∞

L3(t) ≤ σL2L
�
2

σL3 + μL
= L�

3,

lim sup
t→∞

L4(t) ≤ σL3L
�
3

σL4 + μL
= L�

4 and lim sup
t→∞

P(t) ≤ σL4L
�
4

σP + μP
= P�. That is, all

solutions of the sub-system (2.1) are bounded for all time t > 0.
For the boundedness of the solutions of the sub-system (2.2), we consider the

following equation (for the rate of change of the total adult mosquito population):

ṄM = f σP P − μXSX − μXEX − μX IX − μMNM

+bH (Q2 + Q3 − Q1 + R1 + R2)AX , (A-1)

where, NM = AX + AY + AZ (with AX , AY , AZ , Q1, Q2, Q3, R1 and R2 are as
defined in Sect. 2). It can be shown that Q2 + Q3 − Q1 + R1 + R2 < 0. Hence, Eq.
(A-1) can be re-written as

ṄM = f σP P − μXSX − μXEX − μX IX − μMNM

+bH (Q2 + Q3 − Q1 + R1 + R2)AX ≤ f σP P − μMNM , (A-2)
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so that,

lim sup
t→∞

NM (t) ≤ f σP P�

μM
.

Hence, the solutions of the equations of the sub-system (2.2) are bounded for all time
t > 0. Similarly, consider the equation for the rate of change of the total human
population, given by:

ṄH = � − μH NH − δH (IHp + IHu ) ≤ � − μH NH , (A-3)

from which it follows that lim sup
t→∞

N (t) ≤ �

μH
. Thus, the solutions of the sub-system

(2.4) are bounded for all t > 0. Since the solutions of the three sub-systems of the
model (2.1), (2.2),(2.4) are bounded, it follows that the solutions of the model are
bounded. This concludes the proof of Item (a).
(b) The proof for the invariance of the region �1 follows from the bounds estab-
lished in Item (a) (i.e., 0 < lim sup

t→∞
L1(t) ≤ L�

1, 0 < lim sup
t→∞

L j (t) ≤ L�
j and

0 < lim sup
t→∞

P(t) ≤ P�) and the fact that Ė(t) < 0 whenever E(t) > KE , L̇1(t) < 0

whenever L1(t) > L�
1 and L̇ j (t) < 0 whenever L j (t) > L�

1 ( j = 2, 3, 4), respec-
tively.

For the invariance of the region �2, it is convenient to consider the following
equation for the rate of change of the total mosquito population given by:

ṄM = f σP P − μXSX − μXEX − μX IX − μMNM

+bH (Q2 + Q3 − Q1 + R1 + R2)AX ≤ f σP P − μMNM .

It follows that ṄM < 0 whenever NM (t) >
f σP P�
μM

. Thus, the region �2 is invariant
with respect to the sub-system (2.2) of the model (2.1), (2.2),(2.4).

Finally, consider the equation for the total human population given by

ṄH = � − μH NH − δH (IHp + IHu) ≤ � − μH NH .

It follows that ṄH < 0 whenever NH (t) > �
μH

. Thus, the region �3 is invariant with
respect to the sub-system (2.4) of the model (2.1), (2.2),(2.4). Since the regions �1,
�2 and �3 are positively-invariant and attracting, it follows that � = �1 × �2 × �3
is positively-invariant and attracting for the model (2.1), (2.2),(2.4). This concludes
the proof of Item (b). 
�

Appendix B: Coefficients of Eq. (3.5)

C1 = bH
{
πp(1 − εdeter )[(1 − εdie,p)εbite|∼die,p + εdie,p]

+πu[(1 − εdie,u)εbite|∼die,u + εdie,u]
}+ μX + μM > 0,
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C2 = bH [πp(1 − εdeter )(1 − εdie,p)εbite|∼die,p + πu(1 − εdie,u)εbite|∼die,u] > 0,

C3 = bH
{
πp(1 − εdeter )[(1 − εdie,p)εbite|∼die,p + εdie,p]

+πu[(1 − εdie,u)εbite|∼die,u + εdie,u]
}+ κV + μX + μM > 0,

C4 = {
πp(1 − εdeter )[εdie,p(1 − εbite|∼die,p) + εbite|∼die,p]

+πu[εdie,u(1 − εbite|∼die,u) + εbite|∼die,u]
}
κ2
V > 0,

C5 = 2κV

(
μM + θY

2
+ ϕZ

2

)
C4 > 0,

C6 = πp(1 − εdeter )
{[εdie,p(1 − εbite|∼die,p) + εbite|∼die,p]μ2

M

+(θY + ϕZ )[εdie,u(1 − εbite|∼die,u) + εbite|∼die,u]μM + εbite|∼die,pθYϕZ
}

> 0,

C7 = πu
{[εdie,u(1 − εbite|∼die,u) + εbite|∼die,u]μ2

M

+(θY + ϕZ )[εdie,u(1 − εbite|∼die,u) + εbite|∼die,u]μM + εbite|∼die,uθYϕZ
}

> 0,

C8 = (μM + κV )K10K12,

C9 = ϕZ + θY + bH
{
πp(1 − εdeter )[1 − (1 − εdie,p)(1 − εbite|∼die,p)]

+πu[1 − (1 − εdie,u)(1 − εbite|∼die,u)]
}

> 0,

C10 = θYϕZ + bH (θY + ϕZ )
{
πp(1 − εdeter )[1 − (1 − εdie,p)(1 − εbite|∼die,p)]

+πu[1 − (1 − εdie,u)(1 − εbite|∼die,u)]
}

> 0,

C11 = bH θYϕZ [πpεdie,p(1 − εdeter ) + εdie,uπu] > 0.

Appendix C: Equations of the model (2.1), (2.2), (2.4) without bednets
intervention

In the absence of the bednet-based intervention, the sub-systems of themodel involving
the adults and human dynamics, given by Eqs. (2.2) and (2.4), reduce, respectively, to
the following sub-systems:

Stage I

⎧
⎪⎨

⎪⎩

ṠX = f σP P + ϕZ SZ + bH Q3SX − (bH + μX + μM ) SX ,

ĖX = ϕZ EZ + bH Q3EX − (bH + κV + μX + μM ) EX ,

İX = ϕZ IZ + κV EX + bH Q3 IX − (bH + μX + μM ) IX .

Stage II

⎧
⎪⎨

⎪⎩

ṠY = (1 − βVω)R2SX − (θY + μM ) SY ,

ĖY = bHβVωR2SX + bH R2EX − (θY + κV + μM ) EY ,

İY = κV EY + bH R2 IX − (θY + μM ) IY .

(C-1)

Stage III

⎧
⎪⎨

⎪⎩

ṠZ = θY SY − (ϕZ + μM ) SZ ,

ĖZ = θY EY − (ϕZ + κV + μM ) EZ ,

İZ = θY IY + κV EZ − (ϕZ + μM ) IZ ,
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Human

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṠH = � − (λV H + μH )SH + ηH RH ,

ĖH = λV H SH − (γH + μH )EH ,

İH = γH EH − (αH + δH + μH )IH ,

ṘH = αH IH − (ηH + μH )RH .

(C-2)

The equations for the aquatic dynamics, given by (2.1), remain unchanged. Hence, the
reduced (no-bednets) model consist of the Eqs. (2.1), (C-1), (C-2).

It can be shown, using the next generation operator method (as in Sect. 3), that the
basic reproduction number of the reduced model (2.1), (C-1), (C-2) is given by

R̃0∗ =
√

bHβV J1 J3S0XβMγH θYϕZκV [(K9 + K12)J5 + K9K11]
K13K14N∗

H (J5K10K12 − J6θYϕZ )(J4K9K11 − J6θYϕZ )
, (C-3)

where,

J1 = bH
[
εbite|die,u εdie,u + εbite|∼die,u(1 − εdie,u)

]
,

J2 = (1 − εdie,u)(1 − εbite|∼die,u), N∗
H = �

μH
,

J3 = (1 − εdie,u)εbite|∼die,u, J4 = (bH + μX + μM ) − bH J2,

J5 = (bH + κV + μX + μM ) − bH J2,

J6 = bH J3, N0∗ =
(ψEϕZσE f σPθY J6)

4∏
i=1

σLi

(J4K9K11 − J6θYϕZ )
6∏

i=1
Ki

,

S0X =

[
f σEσP KE

(
1 − 1

N0∗

)
K9K11

] 4∏
i=1

σLi

(J4K9K11 − J6θYϕZ )
6∏

i=2
Ki

.

Substituting the baseline parameter values in Table 4 (for the holo-endemic setting)
shows that the worst-case scenario basic reproduction number (R̃0) of the model
(2.1), (2.2), (2.4), or, equivalently, the reduced model (C-1), (C-2), given by (C-3), is
R̃0∗ =11.4.

Appendix D: Proof of Theorem 3.2

Proof The proof of Theorem 3.2 is based on using center manifold theory (Carr 1981;
Castillo-Chavez and Song 2004). It is convenient to define the following change of
variables for the model (2.1), (2.2), (2.4): E = x1, L1 = x2, L2 = x3, L3 = x4, L4 =
x5, P = x6, SX = x7, EX = x8, IX = x9, SY = x10, EY = x11, IY = x12, SZ = x13,
EZ = x14, IZ = x15, SHp = x16, EHp = x17, IHp = x18, RHp = x19, SHu = x20,
EHu = x21, IHu = x22, RHu = x23. Using the vector notation X = (x1, . . . x23)T and
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F = ( f1, . . . f23)T , the model can then be written in the form dX
dt = ( f1, . . . f23)T ,

as follows:

ẋ1 ≡ f1 = ψEϕZ

(
1 − x1

KE

)

+
(x13 + x14 + x15) − (σE + μE ) x1,

ẋ2 ≡ f2 = σE x1 − (
σL1 + μL

)
x2,

ẋ3 ≡ f3 = σL1x2 − (
σL2 + μL

)
x3,

ẋ4 ≡ f4 = σL2x3 − (
σL3 + μL

)
x4,

ẋ5 ≡ f5 = σL3x4 − (
σL4 + μL

)
x5,

ẋ6 ≡ f6 = σL4x5 − (σP + μP ) x6,

ẋ7 ≡ f7 = f σP x6 + ϕZ x13 + bH (Q2 + Q3)x7 − (bH Q1 + μX + μM ) x7,

ẋ8 ≡ f8 = ϕZ x14 + bH (Q2 + Q3)x8 − (bH Q1 + κV + μX + μM ) x8,

ẋ9 ≡ f9 = ϕZ x15 + κV x8 + bH (Q2 + Q3)x9 − (bH Q1 + μX + μM ) x9,

ẋ10 ≡ f10 = bH [(1 − βVωp)R1 + (1 − βVωu)R2]x7 − (θY + μM ) x10,

ẋ11 ≡ f11 = bH (βVωp R1 + βVωu R2)x7
+ bH (R1 + R2)x8 − (θY + κV + μM ) x11,

ẋ12 ≡ f12 = κV x11 + bH (R1 + R2)x9 − (θY + μM ) x12,

ẋ13 ≡ f13 = θY x10 − (ϕZ + μM ) x13,

ẋ14 ≡ f14 = θY x11 − (ϕZ + κV + μM ) x14,

ẋ15 ≡ f15 = θY x12 + κV x14 − (ϕZ + μM ) x15,

ẋ16 ≡ f20 = �πp − (λV Hp + μH )x16 + ηH x19,

ẋ17 ≡ f21 = λV Hp x16 − (γH + μH )x17,

ẋ18 ≡ f22 = γH x17 − (αH + δH + μH )x18,

ẋ19 ≡ f23 = αH x18 − (ηH + μH )x19,

ẋ20 ≡ f24 = �πu − (λV Hu + μH )x20 + ηH x23,

ẋ21 ≡ f25 = λV Hu x20 − (γH + μH )x21,

ẋ22 ≡ f26 = γH x21 − (αH + δH + μH )x22,

ẋ23 ≡ f27 = αH x22 − (ηH + μH )x23,

(D-1)

where,

EIRp = bH
x9
NHp

πp(1 − εdeter )
[
εbite|die,pεdie,p + εbite|∼die,p(1 − εdie,p)

]
,

EIRu = bH
x9
NHu

πu
[
εbite|die,uεdie,u + εbite|∼die,u(1 − εdie,u)

]
,

λV Hp = βM EIRp,

λV Hu = βM EIRu,

ωp = x18
NHp

, ωu = x22
NHu

.
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LetR0 = 1 and suppose, further, that βM = β∗
M is chosen as a bifurcation parameter.

Solving for βM = β∗
M fromR0 = 1 gives

βM = β∗
M = �πpπu (C3K10K12 − C2θYϕZ ) (C1K9K11 − C2θYϕZ )

μ2
HbH x

∗
7κVϕZθY [(K9 + K12)C3 + K9K11](RHpV + RHuV )

.

The Jacobian of the transformed system (D-1), evaluated at the DFE (T2) with βM =
β∗
M , is given by

J (β∗
M ) =

[
J1 J2
J3 J4

]
,

where,

J1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ψEϕZ x∗
13

KE
− K1 0 0 0 0 0 0 0 0 0 0 0

σE −K2 0 0 0 0 0 0 0 0 0 0
0 σL1 −K3 0 0 0 0 0 0 0 0 0
0 0 σL2 −K4 0 0 0 0 0 0 0 0
0 0 0 σL3 −μH 0 0 0 0 0 0 0
0 0 0 0 σL4 −K5 0 0 0 0 0 0
0 0 0 0 0 f σP −C1 0 0 0 0 0
0 0 0 0 0 0 0 −C3 0 0 0 0
0 0 0 0 0 0 0 κV −C1 0 0 0
0 0 0 0 0 0 C2 0 0 −K9 0 0
0 0 0 0 0 0 0 C2 0 0 −K10 0
0 0 0 0 0 0 0 0 C2 0 κV −K9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψEϕZ (1 − x∗
1

KE
) ψEϕZ (1 − x∗

1
KE

) ψEϕZ (1 − x∗
1

KE
) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

ϕZ 0 0 0 0 0 0 0 0 0 0
0 ϕZ 0 0 0 0 0 0 0 0 0
0 0 ϕZ 0 0 0 0 0 0 0 0

0 0 0 0 0 − bH R1βV x∗
7

x∗
16

0 0 0 − bH R2βV x∗
7

x∗
20

0

0 0 0 0 0
bH R1βV x∗

7
x∗
16

0 0 0
bH R2βV x∗

7
x∗
20

0

0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 θY 0 0
0 0 0 0 0 0 0 0 0 θY 0
0 0 0 0 0 0 0 0 0 0 θY

0 0 0 0 0 0 0 −βM Qp 0 0 0
0 0 0 0 0 0 0 βM Qp 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −βM Qu 0 0 0
0 0 0 0 0 0 0 βM Qu 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and,

J4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K11 0 0 0 0 0 0 0 0 0 0
0 −K12 0 0 0 0 0 0 0 0 0
0 κV −K11 0 0 0 0 0 0 0 0
0 0 0 −μH 0 0 ηH 0 0 0 0
0 0 0 0 −K13 0 0 0 0 0 0
0 0 0 0 γH −K14 0 0 0 0 0
0 0 0 0 0 αH −K15 0 0 0 0
0 0 0 0 0 0 0 −μH 0 0 ηH

0 0 0 0 0 0 0 0 −K13 0 0
0 0 0 0 0 0 0 0 γH −K14 0
0 0 0 0 0 0 0 0 0 αH −K15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Jacobian J (β∗
M ) has a simple zero eigenvalue (and all other eigenvalues having

negative real parts). Hence, the center manifold theory Carr (1981); Castillo-Chavez
and Song (2004) can be used to analyse the dynamics of (D-1) near βM = β∗

M . This
entails carrying out the following computations.
Eigenvectors of J (T2) |βM=β∗

M
The Jacobian of the transformed system (D-1), evalu-

ated at the DFE (T2)with βM = β∗
M , has a right and left eigenvectors (associated with

the zero eigenvalue) (the expression for the eigenvector wi and vi , i = 1, 2, .., 23, are
given in the Supplementary Material).
Computations of bifurcation coefficients of a and b
By computing the associated non-zero partial derivatives of F(x) evaluated the the
DFE , it follows from Theorem 4.1 in Castillo-Chavez and Song (2004) that the
associated bifurcation coefficients, a and b, are given, respectively, by

a = − 2bH

[
(−w22R2w7v11βV + v21QuβMw9 (w22 + w21 + w23)) x∗

20 + w22βV R2x∗
7 v11 (w20 + w21 + w22 + w23)

(x∗
20)

2

]

− 2bH

[ (−w18βV R1w7v11 + QpβMw9 (w18 + w19 + 1)
)
x∗
16 + w18(x∗

20)
2βV R1x∗

7 v11 (w16 + w18 + w19 + 1)

(x∗
16)

2

]
,

(D-2)

and,

b = bHw9
(
Quv21 + Qp

)
> 0. (D-3)

Hence, it follows from Theorem 4.1 of Castillo-Chavez and Song (2004) that the
transformedmodel (D-1) undegoes a backward bifurcation atR0 = 1 if the bifurcation
coefficient a (given by (D-2)) is positive. This concludes the proof. 
�

Appendix E: Proof of Theorem 3.3.

Proof Consider the special case of themodel (2.1), (2.2), (2.4)without disease-induced
mortality in the host population (i.e., δH = 0). Further, letN0 > 1 (so that the NDFE,
T2, exists) and R̃0 ≤ 1. Setting δH = 0 in the model (2.1), (2.2), (2.4) gives NH (t) →
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�
μH

as t → ∞, and K̄14 = αH + μH . Hence, from now on, NH (t) is replaced by its

limiting value, �
μH

. Furthermore, consider the following linear Lyapunov function:

F = g1EHp + g2 IHp + g3EHu + g4 IHu + g5EX + g6 IX
+g7EY + g8 IY + g9EZ + g10 IZ ,

where,

g1 = βV NHuγHbH R1SXκV ϕZ θY (C3 (K9 + K12) + K9K11) ,

g2 = βV NHubH R1SXκV ϕZ θY (C3 (K9 + K12) + K9K11) K13,

g3 = βV NHpγHbH R2SXκV ϕZ θY (C3 (K9 + K12) + K9K11) ,

g4 = βV NHpbH R2SXκV ϕZ θY (C3 (K9 + K12) + K9K11) K13,

g5 = C2βMγH θ2Yϕ2
Zκ2

V SXβV (C3 (K9 + K12) + K9K11)
2 (NHpQu R2SHu + NHuQp R1SHp

)

(C3K10K12 − C2θYϕZ ) (C1K9K11 − C2θYϕZ )C3

+ K9K11K13 K̄14NHpNHu (C3K10K12 − C2θYϕZ ) κV

C3
,

g6 = K9K11K13 K̄14NHpNHu (C3K10K12 − C2θYϕZ ) ,

g7 = βMγH θ2Yϕ2
Zκ2

V SXβV (C3 (K9 + K12) + K9K11)
2 (NHpQu R2SHu + NHuQp R1SHp

)

(C3K10K12 − C2θYϕZ ) (C1K9K11 − C2θYϕZ )
,

g8 = θY K13 K̄14ϕZ NHpNHu (C3K10K12 − C2θYϕZ ) ,

g9 = C2βMγH θ2Yϕ3
Zκ2

V SXβV (C3 (K9 + K12) + K9K11)
2 (NHpQu R2SHu + NHuQp R1SHp

)

(C3K10K12 − C2θYϕZ ) (C1K9K11 − C2θYϕZ ) K12C3

+ ϕZ K9K13 K̄14NHpNHu (C3K10K12 − C2θYϕZ ) κV (K11 + C3)

K12C3
,

and, g10 = ϕZ K9K13 K̄14NHpNHu (C3K10K12 − C2θYϕZ ) .

The Lyapunov derivative of F (where a dot represents differentiation with respect to
t) is given by:

Ḟ = g1 ĖHp + g2 İHp + g3 ĖHu + g4 İHu + g5 ĖX + g6 İX

+ g7 ĖY + g8 İY + g9 ĖZ + g10 İZ ,

= g1(λV Hp SHp − K13EHp ) + g2(γH EHp − K̄14 IHp ) + g3(λV Hu SHu − K13EHu )

+ g4(γH EHu − K̄14 IHu) + g5(ϕZ EZ − C3EX ) + g6(ϕZ IZ + κV EX − C1 IX )

+ g7[(bHβVωp R1 + bHβVωu R2)SX + C2EX − K10EY ]
+ g8(κV EY + C2 IX − K9 IY )

+ g9(θY EY − K12EZ ) + g10(θY IY + κV EZ − K11 IZ ),

=
(
g1βMQpSHp

NHp
+ g3βMQuSHu

NHu
− g6C1 + g8C2

)
IX

+
(
g7bHβV R1SX

NHp
− g2 K̄14

)
IHp

+
(
g7bHβV R2SX

NHu
− g4 K̄14

)
IHu + (−g1K13 + g2γH ) EHp
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+ (−g3K13 + g4γH ) EHu

+ (−g5C3 + g6κV + g7C2) EX + (−g7K10 + g8κV + g9θY ) EY

+ (−g9K12 + g10κV + g5ϕZ ) EZ

+ (−g8K9 + g10θY )IY + (−g10K11 + g6ϕZ )IZ .

Since SHp(t) ≤ NHp, SHu(t) ≤ NHu , NHp(t) = �πp
μH

and NHu(t) = �πu
μH

in � for
all t > 0, it follows that:

Ḟ =≤ K13 K̄14NHpNHu(C1K9K11 − C2θYϕZ )(C3K10K12 − C2θYϕZ )(R̃2
0 − 1)IX

+ βV NHubH R1SXκV ϕZ θY (C3 (K9 + K12) + K9K11) K13K14(R̃2
0 − 1)IHp

+ βV NHpbH R2SXκV ϕZ θY (C3 (K9 + K12) + K9K11) K13K14(R̃2
0 − 1)IHu

+ ϕ2
Z

(
NHpQu R2SHu + NHuQpR1SHp

)
κ2
V βV (C3 (K9 + K12) + K9K11)

2 θ2Y SXγHβM

bH K12C3 (C1K9K11 − C2θYϕZ )(
1 − 1

R̃2
0

)
EY .

Hence, Ḟ ≤ 0 if R̃0 < 1 with Ḟ = 0 if and only if IX = IHp = IHu = EY = 0.
Therefore, F is a Lyapunov function in � and it follows from LaSalle’s Invariance
Principle (1976) that every solution to the equations in (2.1), (2.2), (2.4) (with δH = 0
and initial conditions in �) converges to T2 as t → ∞ That is,

(EX (t), IX (t), EY (t), IY (t), EZ (t), IZ (t), EHp(t), IHp(t), RHp(t),

EHu(t), IHu(t), RHu(t))

→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞.

Thus, X (t) → (
E∗, L∗

1, L
∗
2, L

∗
3, L

∗
4, P

∗, S∗
X , 0, 0, S∗

Y , 0, 0, S∗
Z , 0, 0,

�πp

μH
, 0, 0, 0,

�πu

μH
, 0, 0, 0

)

as t → ∞ for R̃0 ≤ 1. Hence, the NDFE, T2, is globally-asymptotically stable in
� if R̃0 ≤ 1 for the special case of the model (2.1), (2.2), (2.4) with δH = 0. This
completes the proof. 
�
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