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Abstract. Extrinsic environmental factors influence the distribution and population
dynamics of many organisms, including insects that are of concern for human health and
agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is
a major source of morbidity and mortality in humans. Understanding the mechanistic links
between environment and population processes for these diseases is key to predicting the
consequences of climate change on transmission and for developing effective interventions. An
important measure of the intensity of disease transmission is the reproductive number R0.
However, understanding the mechanisms linking R0 and temperature, an environmental factor
driving disease risk, can be challenging because the data available for parameterization are
often poor. To address this, we show how a Bayesian approach can help identify critical
uncertainties in components of R0 and how this uncertainty is propagated into the estimate of
R0. Most notably, we find that different parameters dominate the uncertainty at different
temperature regimes: bite rate from 158C to 258C; fecundity across all temperatures, but
especially ;25–328C; mortality from 208C to 308C; parasite development rate at ;15–168C
and again at ;33–358C. Focusing empirical studies on these parameters and corresponding
temperature ranges would be the most efficient way to improve estimates of R0. While we
focus on malaria, our methods apply to improving process-based models more generally,
including epidemiological, physiological niche, and species distribution models.

Key words: Anopheles gambiae; basic reproductive number; Bayesian statistics; climate envelope;
malaria; Plasmodium falciparum; sensitivity analysis; thermal physiology; uncertainty analysis.

INTRODUCTION

Malaria is a vector-borne disease that is a major source

of illness and mortality in humans, especially in develop-

ing countries. Like many vector-borne diseases, the

dynamics of malaria are greatly influenced by extrinsic

environmental factors, such as temperature and rainfall.

As climate changes over time, the distribution of both

epidemic and endemic malaria will likely change as well,

presenting new challenges for control. A better under-

standing of how the dynamics of malaria depend on

environmental factors will be vital for understanding and

planning for shifts in malaria incidence.

Various approaches have been used to try to

understand the question of how environmental change

is likely to impact the prevalence and distribution of

malaria (reviewed in Guerra [2007] and Johnson et al.

[2014]). Many of these models can be classified as niche

or species distribution models, and they seek to link

climate factors to observations of the prevalence of

vectors, parasites, or disease occurrence. For mechanis-

tic versions of these models (in contrast to geographical

correlation models), it is necessary to understand how

the vital rates of all players in disease transmission

respond to the environment. Temperature strongly

influences vital rates, particularly in ectotherms, and

its effects can be measured under laboratory conditions.

Despite this basic premise and our reasonable knowl-

edge about thermal physiology, data on responses of
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vital rates to temperature are not widely available. Even

for species that have been well studied, like malarial

parasites and their mosquito vectors (see Plate 1), the

quality and quantity of the data are uneven across traits

and temperatures. The paucity of data compromises the

quality of model predictions, such as the range of

temperatures that are conducive to disease transmission.

Moreover, the sensitivity of model predictions to errors

in empirical estimates is not well known. We develop

methods for estimating sensitivity of model outputs to

model inputs, focusing on the effect of temperature on

malaria transmission.

An important and simple measure of transmission, the

reproductive number, R0, is often used in disease studies,

as it is related to both how quickly a disease can spread

in a naı̈ve population and to the level of prevalence (the

proportion of individuals that have been infected) for

endemic diseases (Keeling and Rohani 2008). Recently,

approaches have been developed to model how R0

depends on temperature by incorporating thermal

responses of traits underlying R0, such as mosquito

and parasite development rates (Mordecai et al. 2013,

Molnár et al. 2013). For malaria, the method involves

the use of laboratory data collected on the temperature

dependence of all components of R0 that depend upon

parasite or vector physiology; temperature response

curves fitted to each component are incorporated into

the R0 equation to find the overall thermal dependence

of transmission. Including these physiologically based

thermal responses produces predictions of transmission

that are more in line with observed incidence patterns

than previous models that do not incorporate these

detailed physiological responses, even without account-

ing for rainfall (Mordecai et al. 2013). Although many

other factors, such as key control measures, may better

predict malaria morbidity and mortality, this kind of

relatively simple modeling is a promising first step in

prioritizing global health policy to respond to broad

changes in the spread and intensification of infectious

diseases (Altizer et al. 2013).

Empirical research on the factors or components that

determine R0 is costly. Thus, it is important to direct

future research towards aspects that will result in the

greatest reduction in uncertainty in R0 overall, and thus

improve our predictions of changes in future transmis-

sion the most. Currently, the laboratory data necessary

to understand the temperature dependence of the

components that determine the response of R0 to

temperature are often limited. Available data leave

substantial uncertainty about the relationship between

each component of R0 and temperature, especially at the

temperatures that are marginal for transmission. Thus,

we anticipate considerable uncertainty in how R0 varies

with temperature. By better understanding all of the

sources of uncertainty, we can prioritize laboratory

studies more efficiently and design effective intervention

strategies (Elderd et al. 2006, Merl et al. 2009). Mordecai

et al. (2013) addressed this issue to some degree by

performing a sensitivity analysis by perturbing the R0

components with respect to temperature. However, this

kind of simple, single-parameter local sensitivity analysis

does not allow a full understanding of either the

uncertainty in components or in R0 overall. Further,

additional data on components of R0 for closely related

species or less well controlled experiments are often

available. These additional data, even if not ideal for

fitting the final models directly, can be informative.

We use a Bayesian approach (Clark 2007) to

understand the full range of uncertainty in the thermal

response of malarial R0. The focus of a Bayesian

analysis is the posterior distribution, i.e., the probability

that the parameters have some value given the data. This

is obtained by combining a likelihood (the probability of

observing the data given parameters with particular

values) and a prior distribution (the assumed probability

that the parameters have some values independent of the

observed data) using Bayes rule. A full discussion of the

Bayesian approach can be found elsewhere (e.g., Clark

2007). A Bayesian approach allows us to incorporate

prior knowledge about the various components of R0,

for instance, by using data from related species in the

inference procedure. This is especially useful in applica-

tions that rely heavily on sparse data, such as the one

explored here.

We are interested in two primary aspects of the

relationship between transmission and temperature. (1)

Which temperatures prevent transmission? (2) Which

temperatures promote transmission? Earlier work on

temperature and disease transmission in general, and for

malaria in particular, has produced mixed results, in

part because the impact of temperature on preventing

transmission (as opposed to promoting it) is often

ignored (Hay et al. 2002, Gething et al. 2010, Rohr et al.

2011, Siraj et al. 2014). We use a Bayesian approach to

explore the uncertainty and sensitivity of these two

transmission outcomes, prevention and promotion, to

mosquito and parasite traits.

We begin by introducing the R0 model and its

components, the potential thermal responses for all its

components, and the available data on these thermal

responses. We next introduce the data model, initial

uninformative priors, and our overall methodology. We

then step through a series of uncertainty and sensitivity

analyses, together with the results for each analysis. This

is followed by a discussion of how the approach taken

compares to more classical analyses and the implications

of the results.

DATA, MODELS, AND METHODS

The standard model of malaria transmission by a

vector is the Ross-Macdonald model (Macdonald 1952)

from which the reproductive number R0 is derived. R0

determines the dynamical threshold for disease trans-

mission and is defined as the average number of

secondary infections caused by a single infected individ-

ual in an entirely susceptible population. It specifies the
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relationships of parameters in the model that are

required for an infection to spread within a population

(R0 . 1) as opposed to dying out (R0 , 1). The most

widely used formulation for malarial R0 (Dietz 1993) is

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

Nr
3

a2bc expð�l=PDRÞ
l

s
ð1Þ

where M is the density of mosquitoes, a is the bite rate,

bc is vector competence, l is the mortality rate of adult

mosquitoes, PDR is the parasite development rate (1/

EIP, the extrinsic incubation period of the parasite), N is

the human density, and r is the human recovery rate.

Most of these model components are directly measur-

able or are closely related to quantities or traits that can

be observed (Mordecai et al. 2013). Following Mordecai

et al. (2013), we assume that the expected mosquito

density is given by

M ¼ EFDpEAMDR

l2
ð2Þ

where EFD is number of eggs produced per female per

day, pEA is the probability that an egg will hatch and the

larvae will survive to the adult stage, and MDR is the

mosquito development rate. The parameters that jointly

define R0 and M are summarized in Table 1, and we

refer to these as components of R0.

Virtually all physiological traits in ectotherms exhibit

unimodal temperature responses, i.e., they have an

optimal temperature at which the trait is maximized

and declines on either side (e.g., Angilletta 2009, Dell et

al. 2011, Amarasekare and Savage 2012). However, the

exact functional form of the unimodal response is still

under debate, especially because it is known to vary with

the type of trait (Dell et al. 2011, Mordecai et al. 2013).

Therefore, as in Mordecai et al. (2013), we determined

the appropriate thermal response model for each

component trait by fitting candidate functional forms:

quadratic for symmetric responses and Brière for

asymmetric (see Data, models, and methods: Approach,

likelihoods, and priors: Likelihoods and Fig. 1). These

were chosen as they are among the simplest functional

forms that exhibit the desired unimodal behavior.

All analyses were conducted in R (R Development

Core Team 2008) with Markov chain Monte Carlo

(MCMC) implemented in rjags/JAGS (Just Another

Gibbs Sampler, [Plummer 2003, 2013]). Computer code

for all analyses are included in the Appendices.

Data

We use two sets of data in our analysis: the main data

set that contains the focal data for the thermal responses

for the components that make up R0 (Table 1) and a

prior data set used to elicit priors for our Bayesian

analysis (both sets included in the Appendices; for

sources see Appendix A: Table 1). Ideally, our main data

set would exclusively comprise laboratory data on

Plasmodium falciparum, the causative agent of the

majority of tropical malaria, and its primary vector

Anopheles gambiae, held at constant temperature for all

components. These data were available for only three

traits: mosquito development rate (MDR), egg to adult

survival ( pEA), and adult mosquito mortality rate (l).
For other traits ideal data are unavailable (Mordecai et

al. 2013), and instead we used data from related species

collected under appropriate laboratory conditions.

More specifically, we prioritized data collected in the

laboratory at constant temperatures. For mosquito and

parasite traits, we prioritized based on the relative to

efficacy of transmission and severity of disease in

humans. Thus, for mosquito traits, we prioritized data

for An. gambiae, followed by other anophelene species,

and finally for Aedes species. For parasite traits, P.

falciparum was prioritized, followed by P. vivax. When

possible, only a single mosquito or parasite species was

used for an individual trait in the main data. For our

prior data set, our conditions for inclusion were more

flexible. Although data on related species held in the lab

at constant temperature were preferred, we also allowed

more distantly related species or less controlled (variable

temperature) experiments. These data are distinct from

the main data set and were used, along with expert

opinion, to elicit informative priors for the parameters

of the unimodal temperature responses for each R0

component.

Approach, likelihoods, and priors

We fitted the thermal response of each component of

R0 (Table 1) to independent data using a Bayesian

approach to obtain the posterior distribution for the

parameters that describe each response (and thus the

posterior distribution of the response itself ), as well as

for R0 overall. Inference in the Bayesian framework

TABLE 1. Component parameters of R0 and their definitions.

Parameter Definition Functional form

a bite rate (1/gonotrophic cycle length) Brière
MDR mosquito development rate Brière
pEA egg to adult survival quadratic
EFD fecundity (eggs�female�1�day�1) quadratic
l mosquito mortality rate quadratic
bc vector competence quadratic (and Brière)
PDR parasite development rate (1/EIP) Brière

Note: EIP is the extrinsic incubation period of the parasite.
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proceeds in three steps. First, a likelihood is defined for

each type of data. Second, appropriate prior distribu-

tions are determined. Third, samples from the posterior

distribution of the parameters, given the data, are

obtained via MCMC. We used this procedure first for

the prior data and for the main data, assuming

uninformative priors in both cases (see Data, Models,

and Methods: Approach, likelihoods, and priors: Priors

and Appendix A: A.2). Next, the posterior distributions

obtained from analyzing the prior data were used to

build informative priors, and the inference procedure

was repeated for the main data using these informative

priors. We then compared the resulting posterior

distributions obtained using the uninformative and

informative priors. Further, we calculated R0 with both

sets of results and compared them. This gave an

indication of the sensitivity of the individual compo-

nents and of R0 to the choice of prior. We followed this

with further sensitivity and uncertainty analyses (Ap-

pendix A: Table A.3).

Likelihoods.—We assumed functional forms for each

component based on our previous work (Mordecai et al.

2013) and on the types of functional forms (unimodal

and frequently asymmetric) that are typical for similar

traits in other arthropod species (Dell et al. 2011). More

specifically, we used either a quadratic (symmetric) or

Brière (asymmetric) function, depending on the compo-

nent. At any given temperature, the mean response

should be determined by this functional form. Further,

all model components are, by definition, greater than or

FIG. 1. Posterior mean (solid line) and 95% highest posterior density (HPD) (dashed lines) of the thermal responses for all
components of R0, with informative priors together with the main data. Traits modeled with a Brière thermal response (cT(T �
T0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTm � TÞ

p
) are grouped in the top row, concave-down quadratic (a(T � T0) (T � Tm)) in the middle row, and concave-up

quadratic (aT 2þ bTþ c) in the bottom row, where T is temperature, T0 is the lower temperature limit of response and Tm is the
upper limit. R0 is the basic reproductive number, and a, b, and c are constants that determine the shape of the unimodal responses
in the quadratic or Briere functions. Data symbols correspond to the species of mosquito or parasite used for the analysis. Solid dot
is Anopheles gambiae or Plasmodium falciparum in An. gambiae;þ is other anopheline species or P. falciparum in other anopheline
species; 3 is Aedes species; and open dot is Plasmodium vivax in other anopheline species.
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equal to zero. Thus, we chose to use a truncated normal

distribution with mean parameter (usually denoted by l)
given by the appropriate functional form (i.e., Brière or

quadratic), as the likelihood for the data for most of the

components of R0. For all of the components we

examined, the lower truncation limit was at zero. Most

components can take any value greater or equal to zero.

Thus, for most of our data Yi j 0 , Yi , b ;
iid N(l ¼

f (Ti ), r
2), where Yi is the data point, b is the upper

truncation limit (either 0 or ‘), f (Ti ) is the Brière or

quadratic temperature response, iid indicates that the

data are independently and identically distributed, and

r2 is the variance of the normal distribution. However,

two components, the vector competence (bc) and the egg

to adult survival ( pEA), are probabilities and are thus

constrained to be between zero and one. For these

components, we would ideally have the actual numbers

of successes and total numbers of observations so that

the more appropriate binomial model could be used.

These data were indeed available for vector competence

and so were modeled with a binomial likelihood, i.e.,

Yi ;
iid Bin(n, p ¼ f (Ti )), where n is the number of total

observations, of which Y were successes, and the

probability, p, of a success at a particular temperature,

f (Ti ), is either Brière or quadratic. For egg to adult

survival the raw data were not available, so we used a

normal distribution truncated at zero and one to model

the proportion of eggs that successfully mature to the

adult stage. This choice keeps calculations simple, allows

straightforward implementation of biologically based

priors, and has shape properties that are more appro-

priate for these data than alternatives such as a beta

distribution.

Priors.—We began by defining a set of default priors

for all parameters that are chosen to be relatively

uninformative. That is, these priors were designed to

constrain parameter values to be biologically reason-

able, but to otherwise provide wide, reasonably even

support across potential parameter values. In particular,

for our default priors, we assumed that the maximum

temperature at which a unimodal, hump-shaped com-

ponent goes to zero is 458C and the minimum

temperature should be 08C, as these temperatures are

generally lethal to mosquitoes. This upper limit is

slightly higher than some observed upper lethal limits,

which are closer to 408C (Bayoh 2001, Bayoh and

Lindsay 2003, Lardeux et al. 2008). We chose the higher

conservative limit to allow a broader range of temper-

atures for which the data could inform the posterior

distributions. Each of the concave-down (or hump-

shaped) curves have a parameter that describes the

temperatures at which trait goes to zero, notated as T0

and Tm for the lower (0) and upper (m) limits,

respectively. Since we required T0 , Tm, we specified

nonoverlapping priors for these parameters. For the

concave-up quadratic, we chose priors that limited the

quadratic curves to those that are concave up and in the

appropriate quadrant. We set the priors on other

parameters (including the precision parameter, s ¼ 1/r,
in the normal distribution) to be diffuse, i.e., to have

wide support. Details can be found in Appendix A:

Tables A.2 and A.3. In all cases, we examined the

sensitivity of the posterior distributions to the priors.

UNCERTAINTY AND SENSITIVITY ANALYSES AND RESULTS

Our uncertainty and sensitivity analyses consisted of

multiple parts. First, we addressed sources of uncertain-

ty in our analysis to understand the expected response of

R0 and its components to temperature and the range of

responses that are supported by data. This is similar to

global sensitivity analysis for the components and R0.

Our measure of uncertainty for each analysis is the 95%

PLATE 1. Typical house in southern Mozambique, Africa, where malaria is endemic. (Inset) Blood-fed Anopheles funestus
mosquitos rest indoors on a bamboo reed wall. Photo credits: K. Paaijmans.
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highest probability density (HPD) interval which gives

the range of a parameter or response corresponding to a

central area containing 95% of the probability. Second,

we compared how the uncertainty in R0 overall depends

on the uncertainty in its components using a variant of

local sensitivity analysis and comparing the results to

those obtained for the global-style analysis. Third, we

addressed how sensitive R0 is to temperature and to its

components, as well as the uncertainty in these

relationships. Here, sensitivity is the amount by which

R0 changes when temperature changes and is given by

the derivative of R0 with respect to T. As with R0 itself,

the uncertainty in this sensitivity is expressed in terms of

the 95% HPD intervals. How the Bayesian and classical

approaches to these analyses compare is addressed

further in the discussion.

Uncertainty in the components of R0

How uncertain are the responses of the mosquito and

parasite traits to temperature, and how does this depend

on the prior information included in the analysis?

To answer this question, we made three sets of

comparisons. First, we qualitatively examined the

impact of adjusting the default priors for each parameter

on the inference for individual components (with both

the main and prior data). Second, we compared the

posterior distributions for individual components of the

main data set obtained with default and informative

priors. In this case, the informative priors are generated

from the posterior distributions obtained from fitting

the prior data to elicit informative priors. Third, we

examined the impact of using an alternative functional

response for the vector competence term, for which there

is both relatively little data and little a priori support for

a particular functional form.

The impact of including the informative priors varied

between components, in some cases decreasing uncer-

tainty (smaller HPD intervals around the mean, such as

bc, pEA, EFD, PDR), sometimes increasing uncertainty

(larger HPD intervals around the mean, such as a,

MDR), or having little impact on the posterior (no

change in HPD intervals, l; see Appendix B: B.1). Across

components, modifying priors on the lower and upper

temperature limits of the responses (T0 and Tm,

respectively) had the greatest impact on the posterior

distributions of the temperature responses overall. The

upper limit of 458C on Tm for the default and some of the

informative priors was important for components for

which no high temperature data were available, such as

the bite rate, a. Full results for each component,

including inferences with both types of priors and a

comparison of the marginal posterior distributions of

parameters with their priors, are included in Appendix B.

In Fig. 1, we show the posterior mean and 95% HPD

interval around this mean (summarizing the extent of

our uncertainty around this response) for all the

components when informative priors were used. Some

interesting patterns emerged when we compared across

components. First, for all components modeled with a

Brière function, the lower temperature limit (the

temperature below which the trait is zero) was less

certain than the upper temperature limit (although this

difference was small for PDR). This was partly due to

the nature of the functional form, i.e., it goes to zero

more quickly at high temperatures than it does at low

temperatures. However, it also reflected that there were

often fewer data available across lower temperatures

than upper temperatures in the main and prior data

together. This pattern of uncertainty at the limits was

not found for the concave-down quadratic responses.

Instead, in some cases, the upper limit was less certain

than the lower. This indicates that the temperature

resolution for experiments needed to pin down the

responses may depend on the type of response (asym-

metric vs. symmetric) that a trait exhibits.

For most of the components explored, either the data

gave a strong indication of whether a symmetric or

asymmetric response was appropriate (Mordecai et al.

2013) or there were biophysical reasons why we expected

a response to be asymmetric or symmetric a priori

(Angilletta 2009, Dell et al. 2011). However, vector

competence (a compound trait) was ambiguous. Thus,

we fit both a quadratic and Brière function for this

component. Both fit quite well, and thus the impact of

fits using both functional forms on the uncertainty in R0

was addressed in the subsequent analysis.

Overall uncertainty in R0

How uncertain is the response of the basic respoduc-

tive rate, R0, to temperature (due to uncertainty in all

components), and how does this depend on the prior

information included in the analysis?

To answer this question we made three comparisons.

First, we compared the posterior distributions of R0

under default and informative priors for the compo-

nents, looking at the overall uncertainty (95% HPD

interval) of the full response curve when all components

were allowed to vary according to their posterior

distributions. Second, we examined the HPD intervals

of three important summaries of R0: minimum (low

temperature transmission limit), maximum (high tem-

perature transmission limit), and peak (temperature at

maximal transmission) R0. Third, we examined the

impact of the two functional responses for the vector

competence term on the posterior distribution of R0.

This analysis shows the overall uncertainty around

which temperatures prevent transmission (low and high

temperature transmission limits) and which tempera-

tures promote transmission (peak temperature).

In Fig. 2, we show the posterior mean of the

temperature dependence of R0 and 95% HPD intervals

of the temperature response of R0 when both informa-

tive and uninformative priors are used. All curves are

scaled to the maximum value of the mean R0(T ) curve.

These are generated using posterior samples from all

components and so indicate the overall uncertainty in

LEAH R. JOHNSON ET AL.208 Ecology, Vol. 96, No. 1



the response curve due to uncertainty in all components,

simultaneously. Notice that the mean R0 curves ob-

tained using default and informative priors are very

similar. Further, the upper 95% HPD intervals were

nearly identical. However, the lower HPD intervals of

R0, especially at higher temperatures, differ considerably

as the additional prior information allowed us to pin

down the high temperature transmission limit more

precisely. This can be seen more clearly by looking at the

posterior distributions of the upper and lower temper-

ature limits of R0 and the distribution of the temperature

at peak R0 (Fig. 2). With the default priors, almost the

full range of possibilities for the lower (from 08C to

248C) and upper (from 258C to 458C) limits were equally

represented. Adding in prior information indicates

support for a slightly lower temperature limit to malaria

transmission, while the upper limit is at a slightly higher

temperature than was predicted with default priors. In

other words, the climate envelope where transmission

may be possible is slightly larger than would be inferred

without prior data. Further, our estimates of the

temperatures that can exclude malaria, particularly at

the upper end, are more precise. However, the prediction

of the temperature of peak transmission, which corre-

sponds to temperatures at which malaria is expected to

be most severe and difficult to control, was robust.

As mentioned in the previous section, the most

appropriate functional response to describe the temper-

ature dependence of vector competence (bc, a com-

pound trait) was ambiguous. Since both functional

FIG. 2. (a) Relative R0 (R0 divided by the maximum value of the posterior mean) assuming a quadratic function for vector
competence, where UP means uninformative priors, IP means informative priors, and HPD means highest probability density.
Smoothed posterior distributions of the (b) lower temperature limit of R0, (c) peak temperature of R0, and (d) upper temperature
limit of R0 all assuming a quadratic function for vector competence. Case with uninformative prior is shown as a dashed line and
with informative prior as a solid line.
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forms fit the available data well, we examined how using

each impacted the posterior inferences for R0. To do

this, we calculated R0 using first the posterior samples

for the Brière response for bc and then the quadratic. All

other components of R0 were allowed to take all possible

values of their posterior distributions. Thus, our

comparison shows how the uncertainty in the functional

form for bc impacts the overall uncertainty in R0 given

the full uncertainty in the other parameters. The choice

of the functional form for bc had little impact on the

posterior distribution of R0(T ) except at the high

temperature limit (Appendix B). As with other compo-

nents examined, the vector competence fit with a Brière

function exhibited reduced uncertainty in the upper limit

compared to the quadratic fit, and as a result, decreased

the uncertainty in R0 at this limit. Since there is no a

priori reason to prefer one or the other of these, in all

further analyses we assumed the quadratic fit, as this

resulted in the most uncertainty in R0 at the upper limit

and was thus a more conservative choice.

Uncertainty in R0 and its sensitivity to temperature,

by component

Which mosquito and parasite traits drive the uncer-

tainty in R0 across temperatures? To answer this

question, we used a variation of a traditional sensitivity

analysis. We set all but a focal component to its

posterior mean. Then, the posterior samples of the focal

component were used to calculate the width of the 95%
HPD at each temperature due to only the variation in

this single component. We then normalized this to the

width of the 95% HPD for the full posterior of R0 (i.e.,

when all components were allowed to vary) to approx-

imate the proportion of the uncertainty each component

contributed to the full uncertainty in R0.

In Fig. 3, we show the amount of uncertainty in R0

due to a single component compared to the uncertainty

overall. The adult mosquito mortality rate l dominated

at intermediate temperatures, i.e., the region in which

temperature promotes transmission, because R0 } 1/l3

(by definition from Eqs. 1 and 2), and at intermediate

temperatures the rate of adult mosquito mortality is low.

More surprising was the relatively narrow range of

temperatures where it dominated: l dominated in the

middle third of the transmission range and primarily

determines the height and location of peak R0. This

explains why the informative priors had so little impact

on the upper HPD interval for R0 (Fig. 2): the posterior

of l was not impacted by additional prior information,

and this component determined the height of the curve.

In contrast, the uncertainty on the lower and upper

limits for transmission was driven by bite rate and

fecundity, respectively. In particular, uncertainty in the

bite rate (a) drove uncertainty in the lower temperature

boundary, while the fecundity (EFD) was most impor-

tant at the upper temperature limit. These two

components were also the most important sources of

uncertainty, after l, at intermediate temperatures. Other

components, such as vector competence (bc), contribut-

ed very little to the overall uncertainty despite the fact

that the data on these components were sparse. This was

primarily because parameters like this are probabilities,

bounded between zero and one, and only impact R0

proportionally. Other parameters have the potential to

vary over orders of magnitude, and thus swamp the

impact of these parameters over most of the range of R0.

Only when the magnitudes of the other parameters are

small, such as the temperature extremes, can these

contribute significantly to the overall uncertainty.

Which mosquito and parasite traits determine the

sensitivity of R0 to temperature and the uncertainty in

the sensitivity across temperatures? We examined how

sensitive R0 is to changes in temperature, that is, how

various components contribute to the change in R0 with

temperature, as measured by the derivative of R0 with

respect to temperature. We especially focused on the

uncertainty of the sensitivity, measured by the HPD

interval around the mean sensitivity, and which compo-

nents drive the uncertainty. We focused on these as they

indicate the data that can best help improve our

understanding of what determines the shape of R0

across temperatures. We started with a standard

sensitivity analysis, calculating the derivative of R0 with

respect to temperature overall and for each component

separately, (dR0/dT )h , where h denotes a parameter in

the set of those listed in Table 1. Thus (dR0/dT )h is the

change in R0 with respect to temperature due to the

temperature response of a single parameter alone (see

Appendix A: Table A.5 for equations). As with the

previous analysis, we then set all components, save a

focal component to its mean, and used the posterior

samples from that focal component to obtain the

marginal posterior distribution for the sensitivity. We

repeated this for all components, then examined the

median sensitivity and the width of the 95% HPD

intervals for the component-wise sensitivity, (dR0/dT )h ,

relative to the overall sensitivity, (dR0/dT )h (calculated

using the posterior samples from all the components at

once) to see which components were driving the

sensitivity of R0 to temperature and the uncertainty in

the sensitivity.

In Fig. 3, we show the uncertainty in the sensitivity of

R0 to temperature by each component scaled by the

overall uncertainty in the sensitivity of R0 to tempera-

ture. For instance, the median sensitivities, by compo-

nent, indicate that at low temperatures R0 was very

sensitive to the bite rate and at high temperatures (even

the very highest) the mortality rate drove the response of

R0 to temperature (Appendix C). However, at very high

and very low temperatures, other components besides

bite rate and mortality began to be important as well,

and these other components were less certain. Thus, at

the temperature extremes determining where transmis-

sion is not possible, the uncertainty in how sensitive R0

is to temperature was driven by other components, such
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as fecundity (EFD) and the parasite development rate

(PDR).

DISCUSSION

Using a Bayesian approach, we identified component

traits that were the main sources of uncertainty in R0

and in how sensitive R0 is to temperature. Overall,

uncertainty about the temperature limits on transmis-

sion was greater than the uncertainty in the optimal

temperature for transmission. We found that much of

the uncertainty in R0 was due to adult mosquito

mortality, l, as one would expect given R0’s nonlinear

dependence on mortality. This contribution was focused

in the region of temperatures that promote transmission,

where l and its uncertainty were small. Other compo-

nents determined the uncertainty near the temperature

limits of R0 in terms of the relative width of the HPD

intervals. In particular, near the low temperature limit,

the uncertainty in R0 was largely due to uncertainty in

the bite rate, a, whereas near the high temperature limit,

the uncertainty was primarily due to uncertainty in

fecundity (EFD). Fecundity also contributed a relatively

large amount of uncertainty across temperatures. The

uncertainty in the high temperature limit itself was

determined primarily by the parasite development rate

(PDR).

The most important empirical data needed to improve

model certainty depends on the goals. To resolve the

uncertainty in the temperature optimum, empirical

studies should focus on measuring adult mosquito

mortality rate from 208C to 308C, as well as bite rate

and fecundity. By contrast, resolving uncertainty sur-

rounding the lower and upper temperature limits on

transmission requires measuring: (1) bite rate from 158C

to 258C, (2) fecundity across temperatures, but especially

;25–328C, and (3) PDR at ;15–168C and 33–358C. The

last is especially interesting, because PDR is not driving

the overall uncertainty at any temperature. Instead, our

uncertainty in how sensitive R0 is to temperature

depends on PDR at both temperature extremes. More

specifically, our uncertainty in the temperature at which

R0 changes from zero is driven by PDR. This also

suggests that PDR could be determining the temperature

limits for malaria transmission and the ability of the

parasite to evolve at the edges of its thermal limits could

determine where malaria could occur. Resolving the

temperature limits is particularly important given that

warming is expected to expand transmission into

currently or recently unsuitable highland areas (Siraj et

al. 2014) and may force currently warm, suitable

lowland areas above the upper transmission limit.

Differences in the presumed thermal limits that inhibit

transmission can impact predictions of when and where

transmission is likely to occur both now and in the

future (Ryan et al., in press). A better understanding of

the uncertainty in the temperatures that inhibit trans-

mission should help inform policy priorities as climate

changes.

Further, our results provide guidance as to which

components may not be as high priority for further

work. For instance, our analysis indicates which

components are contributing relatively little to the

uncertainty in R0, such as vector competence (bc).

Although these components are necessary for transmis-

FIG. 3. (a) Relative width of the 95% HPD intervals due to uncertainty in each component, compared to uncertainty in R0

overall. Each curve was obtained as followed. For each component, R0 was calculated for the thinned posterior samples of that
component, with all other components set to its posterior mean. Then the width of the inner 95% HPD was calculated at each
temperature. This was then normalized to the width of the HPD of the full posterior distribution of R0 at each temperature. (b)
Relative width of the 95% HPD in (dR0/dT )h scaled by the width of the 95% HPD for (dR0/dT )h at each temperature, calculated as
in panel (a). In both, a quadratic response for vector competence (bc) was used. The term e2a refers to egg to adult survival ( pEA
elsewhere in the text).
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sion (incompetent vectors cannot transmit disease, for

example), investment in reducing uncertainty in these

components will have a comparatively small impact on

our overall understanding of R0. Thus, these compo-

nents could be given a lower priority for further

empirical effort, especially if these components are

difficult or expensive to measure.

Our method is unusual in that it combines concepts

and approaches from traditional global and local

sensitivity analyses with a Bayesian method of inference.

Bayesian analyses often focus on the inference and

uncertainty aspects, and, for simpler models, model and

variable selection. If sensitivity is addressed, it is

typically the sensitivity of the posterior to the prior

specification. Conversely, most sensitivity analyses

would typically be conducted using parameter values

selected at random or evenly over some reasonable

range of parameters for a system instead of performing

parameter inference as part of the procedure. This

traditional approach would be most similar to perform-

ing our analysis using samples from informative priors.

The choice to take the extra step and fit data before

doing the uncertainty and sensitivity analyses depends

on whether or not appropriate, high quality data are

available for the analysis. If this is not the case, then

incorporating additional data could lead to biased

results. However, even moderately good data, such as

we have in our example, allowed us to narrow down the

regions of parameter space that are reasonable for our

system by allowing the data to inform us of how the

parameters that describe our thermal response curves

are correlated for each component of R0, which is not

easy to obtain a priori.

On the other hand, in this example, we have been

forced to use data from alternative species, even for the

focal data. For instance, we used fecundity data for

Aedes albopictus for the focal data, even though we

expect these are likely to be different from any Anopheles

species. We also used Plasmodium vivax data for vector

competence. Thus, we may have underestimated the

overall uncertainty in R0 and the uncertainty due to

these components. It is unclear how to explicitly

incorporate this into the current (or any other)

framework to quantify the impact of using these data.

However, the types of sensitivity analyses we conducted

take into account the structure of the model and give

information about how much each component could

potentially contribute to the overall uncertainty. We

can, therefore, use these analyses to complement our

intuition about how to focus research efforts. Thus,

although fecundity for Anophelene species and vector

competence for P. falciparum could be useful (since we

had to use alternative species for these analyses), when

combined with the rest of the analyses, we would

prioritize fecundity as uncertainty in that component

has a bigger impact on overall uncertainty. Further, we

might expect that biological reasons may explain

uncertainty in some components that contribute to R0,

for instance because there is more individual variability

in some traits or local adaptation (Sternberg and

Thomas 2014). With appropriate data we could

explicitly include individual- level (or population-level)

variation as part of the analysis or combine data across

different populations, while allowing differences in

thermal response curves within the framework.

Although we applied our methods to a particular

formulation of R0 for malaria, the approach is

appropriate for mechanistic models of other systems,

including other vector-borne disease and species distri-

bution models. To best understand the full uncertainty

for a particular disease or species distribution, consid-

eration of multiple mechanistic models and environ-

mental drivers would allow researchers to further

understand model uncertainty and the robustness of

predictions to other formulations. For instance, alter-

native dynamical models could change the estimate of

the peak and range of species distributions, as the

functional relationship between various traits or vital

rates and population performance could be substantially

different. This is an issue that is largely ignored in the

literature addressing disease incidence, species distribu-

tions, and climate envelopes. This source of model

uncertainty needs to be addressed to fully quantify

uncertainty in the response of populations to climate

change. We suspect that for many species and diseases,

including malaria, the uncertainty inherent in the

individual components would often swamp model

uncertainty in big picture quantities like R0. This is

especially true when data from a focal species are not

available at all and further emphasizes the importance of

high quality data for parameterizing these kinds of

models. However, alternative formulations incorporate

each component in different ways, so the conclusions

about which components drive uncertainty are likely to

be less robust. Consideration of multiple models can

indicate what data acquisition should be prioritized, for

instance if it is important across a variety of model

formulations, and further, which new data would allow

better discrimination between competing models. The

Bayesian approach allows direct comparison of models

and their uncertainty. Thus, it has the potential to be a

useful tool for identifying concrete recommendations for

future research to improve predictions of how factors

such as climate change could impact the distribution of

malaria and other vector-borne diseases.
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